Frame
No Frame

Hyperscript

Defects in Crystals

© H. Föll

Matrix of Modules

Hyperscripts of AMAT:
General Information

Home

This matrix contains all modules (i.e. HTML files) of the Hyperscript. Incomplete modules will be finished, and more modules will be added in due time. There are three main levels for organizing the modules:
Basics
Contains some reference information and on occasion longer texts on background knowledge that you should be familiar with.
Learning (main part)
Contains everything that you should know after taking the course.
Advanced
Supplies knowledge beyond the scope of the course that is of some interest. Includes, on occasion, also elaborations about historical, strange or funny stuff relating to topics of the course.
The main part ("learning") is further subdivided in 4 (vertical) columns and the (horizontal) chapters and sub-chapters which define the matrix. The columns "backbone I" and "backbone II" constitute the hard core of the Hyperscript; the columns "illustrations" and "exercises" intend to help in understanding and to practical applications of what has been learned.
The cells of the matrix contain all the modules, identified by their filename. The first letter of a filename has a specific meaning which is given elsewhere. The numbers have the following meaning:
1. number=chapter
2. number=subchapter
3. number=running integer
The color coding of the entries means:
Bold and blue: Finished module
Bold and red: Unfinished module.
Bold and green: Module contains JAVA or animation insets.
Bold and light green: "Multiple Choice" Exercises.
Bold and Pink: Summaries; Essentials; Quick questions.

Metafiles

  Contents Preface Books Running Term
 
Basics Backbone I Backbone II Illustrations Exercises Advanced

1. Introduction

1.1 Scope of the Course
  r1_1_1
Relation to other courses
r1_1_2
Background
r1_1_3
Organisation




1.2 Topics for Seminar
  r1_2_1
Suggested Topics
 


1.3 General Classification and Properties of Defects
b1_3_1
Lattice
b1_3_2
Vacancy
b1_3_3
interstitial
b1_3_5
Equilibrium
b1_3_6
Band gap
r1_3_1
Classification
r1_3_2
General properties
r1_3_3
Complications

t1_3_1
Extended V
t1_3_2
Dumbbell
t1_3_3
Octahedral site
t1_3_4
Tetrahedral site
t1_3_5
Swirl defects
Article
"Swirls Defects"

t1_3_1
Crowdion
t1_3_2
Cerofoli questions
t1_3_3
D-defects/ELYMAT

2. Properties of Point Defects

2.1 Intrinsic Point Defects and Equilibrium
m2_1_1
Combinatorics
m2_1_2
Stirling formula
b2_1_3
Schottky defect
b2_1_4
Frenkel defect
b2_1_5
Enthalpie/Entropie
b2_1_6
Ionic crystals
b2_1_7
Debye length
b2_1_8
Vagaries S-Definition
r2_1_1
Simple V and i
r2_1_2
Frenkel defects
r2_1_3
Schottky defects
r2_1_4
Mixed Point Defects
r2_1_5
Essentials to 2.1

i2_1_1
H for V and i
m2_1_1
Math "Schottky Defects"
t2_1_1
H and S Frenkel and Schottky
t2_1_2
PDs in ionic crystals
e2_1_1
Find the mistake
s2_1_1
Solution to e2.1.1
e2_1_2
Math "Sform"
s2_1_2
Solution to e2.1.2
e2_1_3
Calculate Sform
s2_1_3
Solution to e2.1.3
e2_1_4
Math "conc. V"
s2_1_4
Solution to e2.1.4
e2_1_5
Math "mixed PD"
s2_1_5
Solution to e2.1.5
e2_1_6
G difference Frenkel-Schottky
s2_1_6
Solution to e2.1.6
e2_1_7
Quick questions 2.2.1
e2_1_8
Quick questions 2.2.2- 2.1.4
c2_1_1
Multiple choice
c2_1_2
Multiple choice
c2_1_3
Multiple choice
t2_1_1
Entropy in QM
t2_1_2
Biography Frenkel
t2_1_3
Biography Schottky
2.2 Extrinsic Point Defects and Agglomerates
b2_2_1
Phase diagrams
b2_2_2
Java Arrhenius
r2_2_1
Impurity atoms
r2_2_2
Local and global equilibrium
r2_2_3
Essentials to 2.2
    e2_2_1
Properties Johnson complex
s2_2_1
Solution to e2.2.2

e2_2_2
Quick questions 2.2.
c2_2_1
Multiple choice
c2_2_2
Multiple choice
t2_2_1
V -Impurity equilibrium
2.3 Point Defects in Semiconductors like Silicon


r2_3_1
General Remarks


Articles:
PD in Si - 1

PD in Si - 2
PD in Si - 3
2.4 Point Defects in Ionic Crystals
b2_4_1
Potential
b2_4_2
R and k - mol and c
 
r2_4_1
Motivation and Basics
r2_4_2
Kröger-Vink Notation
r2_4_3
Schottky Notation and Generalization
r2_4_4
Brouwer diagram


t2_4_1
Chem. Potential and Equilibrium
t2_4_3
Mass Action Law
t2_4_4
Pitfalls of Mass Action
t2_4_5
Use of Mass Action
t2_4_6
Alternative Derivations of Mass Action Law

3. Point Defects and Diffusion

3.1 General Remarks
b3_1_1
Microelectronics
b3_1_2
Optoelectronics
b3_1_3
D and atomic mechanisms
r3_1_1
Basics
r3_3_1
Essentials to 3.1

t3_1_1
Values HM
e3_1_1
Calculate g
s3_1_1
Solution to 3.1.1

3.2 Diffusion Mechanisms

r3_2_1
Anim: Atomic mechanisms
r3_2_2
Self-diffusion
r3_2_3
Impurity diffusion
r3_2_4
Essentials to 3.2

t3_2_1
Values self-diff.
t3_2_2
Self-diff - Arrhenius
t3_2_3
More diffusion in Si
t3_2_5
Imp. diff. in Si- Arrhenius
t3_2_4
Imp. diff in Si - jumps
e3_2_1
Crystal identity
s3_2_1
Solution 3.2.1

3.3 Experimental Approaches to Diffusion Phenomena

r3_3_1
Diffusion profiles
r3_3_2
Essentials to 3.3

i3_3_1
Denuded zones (ELYMAT)
e3_3_1
Quick questions 3.

4. Experimental Techniques for Studying Point Defects

4.1 Point Defects in Equilibrium
b4_1_1
Positron  
r4_1_1
PDs in equilibrium
r4_1_2
Essentials to 4.1

t4_1_1
HF-values
g4_1_1
Positron lifetime in Ag
g4_1_2
Positron lifetime Si/Ge
g4_1_3
Dl example
g4_1_4
Noise example
e4_1_1
Life time of positrons
s4_1_1
Solution 4.1.1
Article
Positron Annihil.
4.2 Point Defects in Non-Equilibrium

r4_2_1
PDs in non-equilibrium
r4_2_2
Essentials to 4.2

g4_2_3
Simple swirls
g4_2_4
High quality STM
g4_2_5
Quenching calculations
g4_2_6
STM of GaAs
e4_2_1
Diffusion during cooling
s4_2_1
Solution 4.2.1
e4_2_2
Quick questions 4.

4.3 Specialities


r4_3_2
Specialities



5. Dislocations

5.1 Basics

r5_1_1
Burgers- and line vector
r5_1_2
Volterra; consequences
r5_1_3
Essentials to 5.1

i5_1_1
History of dislocations
i5_1_2
Perspective view disl.
i5_1_3
Steel and Bullshit
i5_1_4
Transmogrification
i5_1_5
Egyptian fire blowing
i5_1_6
Merowinger damascene sword
a5_1_1
Anim.: Movement of disloc.
e5_1_1
Sign of b and t
s5_1_1
Solution to e5_1_1
e5_1_2
Animation mistakes
s5_1_2
Solution to e5_1_2

e5_1_1
Quick questions 3.
t5_1_1
Damascene technique
t5_1_2
Discovery or invention?
t5_1_3
Voltaterras tubes
t5_1_4
History steel
t5_1_5
Glossary Steel
t5_1_6
Most important technology
l5_1_1
Literature Steel
a5_1_1
Anim.: Movement mixed disl.
5.2 Elasticity Theorie, Energy and Forces
b5_2_1
Displacement and strain
r5_2_1
Basic elast. Theory
r5_2_2
Stress field dislocation
r5_2_3
Energy of dislocations
r5_2_4
Forces on dislocations
r5_2_5
Interactions between dislocations
r5_2_6
Essentials to 5.2

i5_2_1
Stress graphical
i5_2_2
Force between edge disl.
e5_2_2
Forces on dislocations
s5_2_2
Solution to e5_2_2
t5_2_1
Hollow dislocations
5.3 Movement of Dislocations

r5_3_1
Movement, kinks, jogs, generation
r5_3_2
Generation of dislocations
r5_3_3
Climb of dislocations
r5_3_4
Essentials to 5.3

i5_3_1
Jogs and vacancy trail
e5_3_1
Dislocations and obstacles
Article
Frank and Read
5.4 Partial Dislocations and Stacking Faults

r5_4_1
SF and close packing
r5_4_2
Reactions involving partials
r5_4_3
Specific crystals
r5_4_4
Essentials to 5.4

i5_4_1
i-aggl. to dislocat. in Si
i5_4_2
Stair-rod dislocation
i5_4_3
SF tetrahedra formation
i5_4_4
SF tetrahedra in Au
i5_4_5
Thompsom tetrahedra


6. Observing Dislocations and Other Defects

6.1 Decoration and Conventional Microscopy
b6_1_1
Diff.- and generation currents
r6_1_1
Preferential Etching
r6_1_2
IR microscopy

i6_1_1
Swirls (low magnification)
i6_1_2
Process induced defects- overview
i6_1_3
Process induced defects- large 1
i6_1_4
Process induced defects- large 2
i6_1_5
Defects in transistors
i6_1_6
Anodic etching 1
i6_1_7
Principle EBIC
i6_1_8
Comp. anodic etchg.-EBIC
i6_1_9
IR of edge disl. in GaAs
i6_1_10
Etching precipitates

t6_1_2
Defect etching in Si
t6_1_3
Dislocations in trenches
6.2 X-Ray Topography

r6_2_1
X-ray topography

i6_2_1
X-ray topography
i6_2_2
Case study bipolar


6.3 Transmission Electron Microscopy

r6_3_1
Basics
r6_3_2
Case studies
r6_3_3
Stacking faults
r6_3_4
Atomic Resolution

i6_3_1
WB different g
i6_3_2
Unknown ribbon defect
i6_3_3
Rad. damage in Co
i6_3_4
FeSi precipitates in Si
i6_3_5
Prismatic punching
i6_3_6
Helix dislocations
i6_3_7
Dislocations in TiAl
i6_3_8
PtSi on Si
i6_3_9
Comparison wb - bf
i6_3_10
Dislocations in Ti-Al

t6_3_1
TEM and Kikuchi lines
t6_3_2
Micro twin
t6_3_3
OSF

7. Grain Boundaries

7.1 Coincidence Lattices
  r7_1_1
Twin boundaries
r7_1_2
The CSL
r7_1_3
Defects and DSC lattice

a7_1_1
Rotating hex. lattice
i7_1_1
Icrit in supercond.
  t7_1_1
Specifics to CSL theory
t7_1_2
Rigid body translations
7.2 Grain Boundary Dislocations
  r7_2_1
Small angle GBs
r7_2_2
Case studies Si I
r7_2_3
Case studies Si II
r7_2_4
Generalization
  i7_2_1
Drawing screw network
i7_2_2
HRTEM of screw dislocations
i7_2_3
SAGB with twist and tilt
i7_2_5
Disl. reaction in GB
  t7_2_1
Franks formula
t7_2_2
Complication in 111 twist boundary
t7_2_3
Stacking fault in DSC
7.3 O-Lattice Theory
b7_3_1
Matrix algebra

r7_3_1
Concept
r7_3_2
Working O-lattice
r7_3_3
Significance O-lattice
r7_3_4
Special O-lattices
r7_3_5
DSC lattice
r7_3_6
Large Angle GB's
i7_3_1
Bollmann original
i7_3_2
S=5 and O-lattice
  t7_3_1
Bollmann and Franks formula

8. Phase Boundaries

8.1 Using the CSL Concept and Misfit Dislocations
  r8_1_1
Misfit Dislocations
  Articles
Sir Peters Paper
Sir Peter annotated
i8_1_1
Misfit disl. in Si
  t8_1_1
Compliant substrates
8.2 Case Studies
  r8_2_1
Ni Silicides
r8_2_2
Pd Silicides
  i8_2_1
NiSi2 cross-section
i8_2_2
NiSi2 overview
 
8.3 Steps in Interfaces
  r8_3_1
Relation steps - dislocations
r8_3_2
Open questions
  i8_3_1
BaTiO3 large
  t8_3_1
Interpreting BaTiO3
 
Basics backbone I Backbone II Illustrations Exercise Advanced
 
Module Count (finished modules only)
24 54 11 76 31 34
Grand Total: 230