2.2 Extrinsic Point Defects and Point Defect Agglomerates

2.2.1 Impurity Atoms and Point Defects

Consider a real crystal - take even a hyperpure single crystalline Si crystal if you like. It's not perfect! It just is not. It will always contain some impurities. If the impurity concentration is below the ppm level, then you will have ppb, or ppt or ppqt (figure that out!), or... - it's just never going to be zero.
The highest vacancy concentration your are going to have in simple metals close to the melting point is around 10–4 = 100 ppm; in Si it will be far lower. On the other hand, even in the best Si you will have some ppm of Oi (oxygen interstitials) and Ci(Carbon substitutionals).
In other words - it is quite likely that besides your intrinsic equilibrium point defects (usually vacancies) squirming around in equilibrium concentration, you also have comparable concentrations of various extrinsic non-equilibrium point defects. So the question obviously is: what is going to happen between the vacancies and the "dirt"? How do intrinsic and extrinsic point defects interact?
Let's look at the impurities first. Essentially, we are talking phase diagrams here. If you know the phase diagram, you know what happens if you put increasing amounts of an impurity atom in your crystal. Turned around: If you know what your impurity "does", you actually can construct a phase diagram.
However, using the word "impurity" instead of "alloy" implies that we are talking about small amounts of B in crystal A.
The decisive parameter is the solubility of the impurity atom as a function of temperature.
In a first approximation, the equilibrium concentration of impurity atoms is given by the usual Arrhenius representation, akin to the case of vacancies or self-interstitials. This is often only a good approximation below the eutectic temperature (if there is one). Instead of the formation energies and entropies, you resort to solubility energies and entropies.
There is a big difference with intrinsic point defects, however. The concentration of impurity atoms in a given crystal is pretty much constant and not a quantity that can find its equilibrium value. After all, you can neither easily form nor destroy impurity atoms contained in a crystal.
That means that thermal equilibrium is only obtained at one specific temperature, if at all. For all other temperatures, impurity atoms are either undersaturated or oversaturated.
Now the obvious: Vacancies, divacancies, interstitials etc. may interact with impurity atoms to form complexes - provided that there is some attractive interaction. Interactions may be elastic (e.g. the lattice deformation of a big impurity interstitial will attract vacancies) or electrostatic if the point defects are charged. Schematically it may look like this:
 
Intrinsic and extrinsic point defects and complexes
 
An impurity - vacancy complex (also known as Johnson complex) is similar to a divacancy, just one of the partners is now an impurity atom. The calculation of the equilibrium concentration of impurity - vacancy complexes thus proceeds in analogy to the calculations for double vacancies, but it is somewhat more involved. We obtain (for details use the link).
 
cC  =  z · cF · cV(T)
1 – z · cF
  · exp  DSC
k
 · exp  HC
kT
             
   »  z · cF · cV(T)   · exp  DSC
k
 · exp  HC
kT
 
With cC = concentration of vacancy-impurity atom complexes, cF = concentration of impurity atoms, cV = equilibrium concentration of (single) vacancies, and DSC or HC = binding entropy or enthalpy, resp., of the pair. z, again, is the coordination number.
That the coordination number z appears in the equation above is not surprising - after all there are always z possibilities to form one complex. Note that the term 1 – z · cF must be some correction factor, obviously accounting for the possible case of rather large impurity concentrations cF. Why? - Well, for small cF, this term is just about 1 and we get the approximation from above.
Note also that as far as equilibrium goes, we have a kind of mixed case here. The impurity atoms have some concentration cF that is not an equilibrium concentration. But if we redefine equilibrium as the state of crystal plus impurities (essentially we simply change the G0 = Gibbs energy of the "perfect" crystal in one of our first equations), than the concentration cC of vacancy-impurity atom complexes is an equilibrium concentration.
The equation above for cC is quite similar to what we had for the divacancy concentration.
If you forget the "correction factor" for a moment, we have identical exponential terms describing the binding enthalpy, and pre-exponential factors of z · cV · cF for divacancies and z · cV · cV for the vacancy - impurity complexes.
In both cases the concentrations decreases exponentially with temperature. However, assuming identical binding enthalpies for the sake of the argument, in an Arrhenius plot the slope for divacancies would be twice that of vacancy-impurity complexes - I sincerely hope that you can see why!
The total vacancy concentration c1V(total) (= concentration of isolated vacancies + concentration of vacancies in the complexes) as opposed to the equilibrium concentration without impurities c1V(eq) is given by
 
cV(total)  =  cV(eq)  +  cC
 
That's what equilbrium means! If impurity atoms snatch away some vacancies that the crystal "made" in order to be in equilibrium, it just will make some more until equilibrium is restored.
cC thus can be seen as a correction term to the case of the perfect (impurity free) crystal which describes the perturbation by impurities. This implies that cV >> cC under normal circumstances.
We will find out if this is true and more about vacancy - impurity complexes in an exercise.
You don't have to do it all yourself; but at least look at it - it's worth it.
 
 
Exercise 2.2-1
Properties of Johnson complexes
     
     
   
Questionaire
Multiple Choice questions to 2.2.1
Exercise 2.2-2
Quick Questions to 2.2
     
     

To index Back Forward as PDF

© H. Föll (Defects - Script)