Frame
No Frame

Hyperscript

Advanced Materials B

Part 1: Electronic Materials

© Prof. Dr. Helmut Föll

Matrix of Modules

Hyperscripts of AMAT:
General Information

Index
 
This matrix contains all modules (i.e. HTML files) of the Hyperscript. Incomplete modules will be finished and more modules will be added in due time. There are three main levels for organizing the modules:
Basics
Contains some reference information and on occasion longer texts on background knowledge that you should be familiar with.
Learning (main part)
Contains everything that you should know after taking the course.
Advanced
Supplies knowledge beyond the scope of the course that is of some interest. Includes, on occasion, also elaborations about historical, strange or funny stuff relating to topics of the course.
The main part ("learning") is further subdivided in 4 (vertical) columns and the (horizontal) chapters and sub-chapters which define the matrix. The columns "backbone I" and "backbone II" constitute the hard core of the Hyperscript; the columns "illustrations" and "exercises" intend to help in understanding and to practical applications of what has been learned.
The cells of the matrix contain all the modules, identified by their filename. The first letter of a filename has a specific meaning not important in this context. The numbers have the following meaning:
1. number = chapter
2. number = subchapter
3. number = running integer
 
Color coding of entries
Blue: Finished to a large degree
Red: Unfinished to a large degree
Dark green: Contains JAVA or animation
Light green: "Multiple Choice" Exercises
Purple: Required reading Module.
Pink: Summaries
 

Metafiles

  Contents Preface Books Running Term  
 
Basics Backbone I Backbone II Illustrations Exercises Advanced

1. Introduction


r1_1_1
General Remarks
r1_1_2
How to use the Script
r1_1_3
Electronic Mat. and products

i1_1_1
Google and ELMAT
p1_1_1
People forget
g1_1_2
Illustrating tables
g1_1_3
Skeleton foil
p1_2_1
Silicone vs. silicon


2. Conductors

2.1 Ohm's Law and Theory of Charge Transport
b2_1_1
Averaging vectors
b2_1_3
Function generator
r2_1_1
Ohms Law 1
r2_1_2
Ohms Law 2
r2_1_3
Hall effect
r2_1_4
Summary
    e2_1_1
Numbers µ
s2_1_1
Solution e2_1_1
e2_1_2
Numbers v0, t, l
s2_1_2
Solution e2_1_2
e2_1_3
4 Ghz processor
s2_1_3
Solution e2_1_3
c2_1_1
Conductivity 1
c2_1_2
Conductivity 2
c2_1_3
Hall effect
 
           
2.2 Materials and Conductivity
r2_2_1
Metals
r2_2_2
Alloys
r2_2_3
Non-metals
r2_2_4
Summary
  t2_2_1
Prop. Metals
t2_2_2
Resid. resistance Na
g2_2_1
Al on different substr.
g2_2_2
r von T
e2_2_1
Quizzes to battery
e2_2_2
Resistance solar cell
c2_2_1
Metals
c2_2_2
Alloys
c2_2_3
Non-metals
c2_2_4
mc summary
t2_2_1
Requirements ICs
t2_2_2
Forgetting r(T)
t2_2_3
Li ion battery
Stanford Paper
Kiel Paper
2.3 General Applications
  r2_3_1
Conductors
r2_3_2
Contacts
r2_3_3
Resistors and Heating
r2_3_4
Summary
  t2_3_1
Properties Cu alloys
t2_3_2
Ag based contacts
t2_3_3
Phase diagram
t2_3_4
Conducting polymer
t2_3_5
Heating elements
t2_3_6
MoSi heater
g2_3_1
Max. T heating elem.


2.4 Special Applications
  r2_4_1
Thermionic Emission
r2_4_2
Field enhanced/Tunneling
r2_4_3
Thermoelectric Effects
r2_4_4
Summary
    c2_4_1
Electron emission
c2_4_3
Thermionic Effects
c2_4_4
mc summary
t2_4_1
Tunneling
t2_4_2
Thermoelectric effects
2.5 Ionic Conductors



r2_5_1
General Remarks
r2_5_2
Debye Length
r2_5_3
Nernsts Law
r2_5_4
Summary

e2_5_1
Field Screening
s2_5_1
Solution e2_5_1
e2_5_2
Nernst equation
s2_5_2
No solution e2_5_2
c2_5_4
Ionic conductors

  2.6 Summary Conductors
r2_6_1
c2_6_1
Conductors mc summary
 

3. Dielectrics

3.1 Definitions and General Relations
b3_1_1
Gauss law
r3_1_1
Basics
r3_1_2
Summary


c3_1_1
Dielectrics general

3.2 Polarisation Mechanisms
b3_2_2
Spherical Coordinates
r3_2_1
General remarks
r3_2_2
Electronic polarization
r3_2_3
Ionic polarization
r3_2_4
Orientation polarization
r3_2_5
Summary/generalization
r3_2_6
Clausius-Mosotti
r3_2_7
Summary

i3_2_1
Values for er
t3_2_1
Mistakes in books

e3_2_1
Max. DK water
s3_2_1
Solution 3.2-1
e3_2_2
Interface polarization
s3_2_2
Solution 3.2-2
e3_2_3
Electronic polarization
s3_2_3
Solution 3.2-3
c3_2_1
Polarization mechanisms
c3_2_2
Electronic Polarization
c3_2_3
Ionic Polarization
c3_2_4
Orientation polarization
c3_2_5
Summary/generalization
c3_2_7
mc summary
t3_2_1
Paul Langevin
3.3 Frequency Dependence of the Dielectric Constant
b3_3_1
Harmonic oscillator
b3_3_2
Fourier transforms
b3_3_3
Complex notation
r3_3_1
General remarks
r3_3_2
Dipole relaxation
r3_3_3
Resonance
r3_3_4
Complete e(w)
r3_3_5
Summary
  t3_3_1
Dielectric function
c3_3_4
Complete e(w)
b3_3_1
Strange words
t3_3_2
Beer and Relaxation
t3_3_3
Frequency dependence
3.4 Dynamic Properties
  r3_4_1
Dielectric losses
r3_4_2
Summary
    c3_4_1
Dielectric losses
t3_4_1
Cooking with microwaves
3.5 Electrical Breakdown and Failure
  r3_5_1
General
r3_5_2
Breakdown Mechanisms
r3_5_3
Summary
    c3_5_1
Dielectric breakdown
 
3.6 Special Dielectrics
  r3_6_1
Piezo electricity and relations
r3_6_2
Ferro electricity
r3_6_3
Summary
  i3_6_1
Piezoelectric fuel injector
c3_6_1
Piezo and Ferro electricity
t3_6_1
Piezo electricity
ferro-electrics
t3_6_4
PZT
  3.7 Summary Dielectrics
r3_7_1
c3_7_1
Dielectrics mc summary
 

4. Magnetic Materials

4.1 Definitions and General Relations
b4_1_1
Comparison magn. - electr.
r4_1_1
Basics
r4_1_2
Dipole origin
r4_1_3
Classification
r4_1_4
Summary

i4_1_1
Magnetic moments atoms
c4_1_2
Dipole origin
c4_1_3
Classification
c4_1_4
mc summary
t4_1_3
Ferromagnetic materials
4.2 Dia- and Paramagnetism

r4_2_1
Diamagnetism
r4_2_2
Paramagnetism
r4_2_3
Summary




4.3 Ferromagnetism

r4_3_1
Mean field theory
r4_3_2
Beyond mean field
r4_3_3
Magnetic domains
r4_3_4
Domain movement
r4_3_5
Losses; frequency
r4_3_6
Hard/soft magnets
r4_3_7
Summary

i4_3_1
Domain structures
e4_3_1
Max. magnetization
s4_3_1
No solution 4.3-1
e4_3_2
Magnetic moments Fe, Ni, Co
s4_3_2
Solution 4.3-2
c4_3_3
Magnetic domains
c4_3_4
Domain movement
c4_3_5
Losses and frequency
c4_3_7
mc summary
t4_3_2
Giant magnetostriction
t4_3_3
Hystereses losses
4.4 Technical Materials and Applications
  r4_4_1
Magnetic materials
r4_4_2
Magnetic data storage
r4_4_3
Summary
 
c4_4_1
Applications
 
  4.5 Summary Magnetic Materials -
r4_5_1
c4_5_1
mc Summary
 

5. Optical Materials and Techniques

5.1 Basic Optics
b5_1_1
Photoelectric effect
r5_1_1
What is light?
r5_1_2
Geometric optics
r5_1_3
Basic wave optics
r5_1_4
Polarization
r5_1_5
Summary


e5_1_1
Derive Snellius law
s5_1_1
Solution 5.1-1
e5_1_2
photon flux
s5_1_2
Solution 5.1-2
e5_1_3
Polarization
s5_1_3
Solution 5.1-3
c5_1_1
MC to Basic optics 5.1.1 - 5.1.3
c5_1_4
MC to 5.1.4
c5_1_5
mc Summary
t5_1_1
Newton vs. Huygens
t5_1_2
Lens abberations
t5_1_3
Interference paradox
t5_1_4
Details light waves
5.2 Optics and Materials
b5_2_1
Optical units
r5_2_1
Interaction with matter
r5_2_2
Feresnel equations
r5_2_3
Complex n
r5_2_4
Polarizers
r5_2_5
Inhomogeneous materials
r5_2_6
Generating light
r5_2_7
Specialities
r5_2_8
Summary

i5_2_1
Complex n Si
i5_2_2
Advanced geometric optics
e5_2_1
Fresnel coefficients
s5_2_3
Solution 5.2-1
e5_2_2
Fresnel and LED
s5_2_2
Solution 5.2-2
e5_2_3
Attenuation light
s5_2_3
Solution 5.2-3
e5_2_4
Brewster Angle
s5_2_4
Solution 5.2-4
e5_2_5
Raleigh scattering
s5_2_5
Solution 5.2-5
c5_2_1
MC to 5.2.1
c5_2_2
MC to 5.2.2
c5_2_3
MC to 5.2.2
t5_2_1
Evanescent waves
t5_2_2
Non linear optics
t5_2_3
Lang and Polaroid
t5_2_4
Types of Luminescence
t5_2_5
Tensor Math
5.3 Optical Components
  r5_3_1
Light sources
r5_3_2
Processing light
r5_3_3
Detecting light
r5_3_4
Summary
      t5_3_1
Deep UV light source
t5_3_2
History Laser
t5_3_3
Anti-reflection coatings
  5.4 Optics- Summary
r5_4_1
c5_4_1
mc Summary
 
Basics Backbone I Backbone II Illustrations Exercises Advanced
 
Module Count (finished modules only)
8 69 9 48 27 34
Grand Total: 195