5.2.3 Merkpunkte zu Kapitel 5.2: Freie Energie und Minimierungsprinzip

Alle thermodynamischen Systeme folgen einem einfachen Minimierungsprinzip (siehe Katen rechts).  
Ein System ist im (thermodynamischen) Gleichgewicht,
sobald die freie Energie G

minimal ist.
G = UTS

Ungeheuer wichtig!

In Worten.
  • Mache die innere Energie U so klein als möglich.
  • Ziehe davon möglichst viel mit der Temperatur T gewichtete Unordnung=Entropie S ab.
  • Minmiere die erhaltene Zustandsfunktion G = UTS; bei einem entsprechenden Anstieg von S kann es sich dabei lohnen, U leicht zu erhöhen.
 
Es mag sich also lohnen, bei hohen Temperaturen etwas in die innere Energie U zu "investieren" (z. B. duch Aufbringen der Bildungsenergie von Leerstellen), falls man damit kräftig Entropie bekommt.  
Grundsätzlich sind damit Systeme bei höheren Temperaturen unordentlicher als bei niedrigen Temperaturen: Kristalle haben mehr Leerstellen; Festkörper schmelzen!  
       
Beispiel Leerstellen:  
Freie Energie von n Leerstellen im Kristall aus N Atomen:
G(n)  =  E0  +  n · EF  –  kBT · ln  N!
n! · (Nn)!
Aus G=Minimum folgt dG/dn=0, daraus  
   
cV  = exp ( –   EF
kBT 
)
 
   
Läßt sich auf jede atomare Fehlstelle verallgemeinern.
Þ Kristalle wollen bei hohen Temperaturen verdrecken!
 

Mit Frame Zurueck Weiter als PDF

© H. Föll (MaWi für ET&IT - Script)