2.1 Complex numbers: Definition

  1. integers: \(\{\ldots,-3,-2,-1,\underbrace{0,\underbrace{1,2,3,\ldots}_{\mathbb{N}}}_{\mathbb{N}_0}\}=\mathbb{Z}\)

  2. rational numbers: \(\mathbb{Q}=\frac{p}{q}\;\; ,\;p,\; q\in\mathbb{Z};\;\;q\notin0\)

  3. real numbers: \(\mathbb{R}\)

    PIC

    \(\Longrightarrow\) real numbers are ”dense”
    many equations have real numbers as solutions e.g.: as solutions e.g.: \begin{eqnarray*} x^2-2=0&\Rightarrow&\;x_{1/2}=\pm\sqrt{2}\approx\pm1.41421\ldots\\ \sin x=0 &\Rightarrow&\;x=n\pi,\;\;n\in\mathbb{Z}\\ e^x-10=0&\Rightarrow&\;x=\ln10\approx2.302585\ldots \end{eqnarray*}

    But:

    \[ \left.\begin{array}{ll}x^2+1=0&\Rightarrow x=?\\ e^x+10=0&\Rightarrow x=?\\\sin x=2&\Rightarrow x=?\end{array}\right\}\mbox{no real numbers as solutions!} \]

    \(\Longrightarrow\) Definition of ”new” numbers!

  4. complex numbers: \(\mathbb{C}\)
    \(\Rightarrow\) almost all equations do have solutions in \(\mathbb{C}\) (even if they have no real solution)
    \(\Rightarrow\) simplification of calculations [complex \(e\)-function]

One new number is needed: \begin{eqnarray*} x^2+1=0&\Leftrightarrow& x^2=-1\\ &\Leftrightarrow& x=\pm\underbrace{\sqrt{-1}}_i=\pm i \end{eqnarray*}

Definition 1 \(i\) is a number which square yields \(-1\)

\(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\)\(i^2=-1\)\(\cdot\;\)only this number is enough
\(\cdot\;\)\(i=\sqrt{-1}\) not quite correct!

\(\rightarrow\) all quadratic equations have now (always two!) simple solutions e.g.: \begin{eqnarray*} x^2+2x+10&=&0\\ \rightarrow x_{1/2}&=&-1\pm\sqrt{1-10}=-1\pm\sqrt{-9}=-1\pm\sqrt{-1\cdot9}\\&=&-1\pm3\sqrt{-1}=-1\pm3i \end{eqnarray*}

Test:

\[(-1+3i)^2+2(-1+3i)+10=1-9-6i-2+6i+10=0\]

same for: \(-1-3i\)
\(\Rightarrow\) expressions such as ”\(-1+3i\)” are solutions of equations\(\\\rightarrow\)”\(-1+3i\)” is a new kind of number, a ”complex number”
\(i=\)”imaginary unit”

\[\underbrace{-1}_{\mbox{real part}}+\stackrel{\mbox{imaginary part}}{\overbrace{3}^{}i} \Rightarrow\mbox{A complex number has a real and an imaginary part}\]
\[\left.\begin{array}{lcl}\mbox{Re}(-1+3i)&=&-1\\\mbox{Im}(-1+3i)&=&3\end{array}\right\}-1+3i\]

In general:

Definition 2 \(z=a+bi\;\;\in\mathbb{C},\;a,b\in\mathbb{R}\)
e.g. \(\;\;z_1=\sqrt{2}+5i,\;\;z_2=\frac{5}{3}+\sqrt{3}i\)
\(\Rightarrow\;\;\) complex numbers are pairs of real numbers with \(i^2=-1\)

\[z=a+bi=(\underbrace{a}_{\mbox{\rm real}}\;,\underbrace{b}_{\mbox{\rm imaginary part}})= \underbrace{ \binom{a}{b} =a \binom{1}{0}+b \binom{0}{1}}_{\mbox{\rm 2D Vector with two basic vectors}} \]

Definition 3 \(\mbox{\rm Re}\{z\}=a,\;\;\;\mbox{\rm Im}\{z\}=b\)


With frame Back Forward as PDF

© J. Carstensen (Math for MS)