2.1 Complex numbers: Definition

(i) integers: $\{\ldots,-3,-2,-1,0, \underbrace{\underbrace{1,2,3, \ldots}_{\mathbb{N}}}_{\mathbb{N}_{0}}\}=\mathbb{Z}$
(ii) rational numbers: $\mathbb{Q}=\frac{p}{q}, p, q \in \mathbb{Z} ; q \notin 0$
(iii) real numbers: \mathbb{R}

\Longrightarrow real numbers are "dense"
many equations have real numbers as solutions e.g.: as solutions e.g.:

$$
\begin{align*}
x^{2}-2=0 & \Rightarrow \quad x_{1 / 2}= \pm \sqrt{2} \approx \pm 1.41421 \ldots \tag{2.1}\\
\sin x=0 & \Rightarrow x=n \pi, \quad n \in \mathbb{Z} \tag{2.2}\\
e^{x}-10=0 & \Rightarrow x=\ln 10 \approx 2.302585 \ldots \tag{2.3}
\end{align*}
$$

But:

$$
\left.\begin{array}{ll}
x^{2}+1=0 & \Rightarrow x=? \\
e^{x}+10=0 & \Rightarrow x=? \\
\sin x=2 & \Rightarrow x=?
\end{array}\right\} \text { no real numbers as solutions! }
$$

\Longrightarrow Definition of "new" numbers!
(iv) complex numbers: \mathbb{C}
\Rightarrow almost all equations do have solutions in \mathbb{C} (even if they have no real solution)
\Rightarrow simplification of calculations [complex e-function]
One new number is needed:

$$
\begin{align*}
x^{2}+1=0 & \Leftrightarrow x^{2}=-1 \tag{2.4}\\
& \Leftrightarrow x= \pm \underbrace{\sqrt{-1}}_{i}= \pm i \tag{2.5}
\end{align*}
$$

Definition $1 i$ is a number which square yields -1

$$
\begin{aligned}
i^{2}=-1 & \cdot \text { only this number is enough } \\
& \cdot i=\sqrt{-1} \text { not quite correct! }
\end{aligned}
$$

\rightarrow all quadratic equations have now (always two!) simple solutions e.g.:

$$
\begin{align*}
x^{2}+2 x+10 & =0 \tag{2.6}\\
\rightarrow x_{1 / 2} & =-1 \pm \sqrt{1-10}=-1 \pm \sqrt{-9}=-1 \pm \sqrt{-1 \cdot 9} \tag{2.7}\\
& =-1 \pm 3 \sqrt{-1}=-1 \pm 3 i \tag{2.8}
\end{align*}
$$

Test:

$$
(-1+3 i)^{2}+2(-1+3 i)+10=1-9-6 i-2+6 i+10=0
$$

same for: $-1-3 i$
\Rightarrow expressions such as " $-1+3 i$ " are solutions of equations
$\rightarrow "-1+3 i "$ is a new kind of number, a "complex number"
$i=$ "imaginary unit"
$\underbrace{-1}_{\text {real part }}+\overbrace{3}^{\text {imaginary part }} i \Rightarrow$ A complex number has a real and an imaginary part

$$
\left.\begin{array}{l}
\operatorname{Re}(-1+3 i)=-1 \\
\operatorname{Im}(-1+3 i)=3
\end{array}\right\}-1+3 i
$$

In general:
Definition $2 z=a+b i \in \mathbb{C}, a, b \in \mathbb{R}$
e.g. $\quad z_{1}=\sqrt{2}+5 i, \quad z_{2}=\frac{5}{3}+\sqrt{3} i$
\Rightarrow complex numbers are pairs of real numbers with $i^{2}=-1$

$$
z=a+b i=(\underbrace{a}_{\text {real }}, \underbrace{b}_{\text {imaginary part }})=\underbrace{\binom{a}{b}=a\binom{1}{0}+b\binom{0}{1}}
$$

2D Vector with two basic vectors
Definition $3 \operatorname{Re}\{z\}=a, \quad \operatorname{Im}\{z\}=b$

