Institut für Materialwissenschaft

Bachelorstudiengang im Wirtschaftsingenieurwesen Materialwissenschaft

Modulhandbuch

Allgemeines, Pflicht- und Wahlpflichtmodule

Redaktion: Dr. Oliver Riemenschneider

Tel.: ++49 (0)431 880 - 6050
Fax: ++49 (0)431 880 - 6053
E-Mail: or@tf.uni-kiel.de

Technische Fakultät der Christian-Albrechts-Universität zu Kiel
Kaiserstr. 2
D - 24143 Kiel

Stand: März 2018
Allgemeine Bemerkungen

Für den Studiengang „Bachelor Wirtschaftsingenieurwesen Materialwissenschaft“ ist das Prüfungsamt des Instituts für Materialwissenschaft an der Technischen Fakultät auf dem Ostufer-Campus zuständig.

Prüfungsamt Materialwissenschaft
Gebäude G, Zimmer G-010
Kaiserstr. 2
24143 Kiel
mail: pa-mawi@tf.uni-kiel.de
Tel.: 0431 / 880 – 6295
Fax: 0431 / 880 – 6053

Module

Kreditpunkte

Modulhandbuch

Prüfungen

Zu alle Modulen wird jedes Semester mindestens einmal eine Prüfung angeboten. Der Titel der Prüfung entspricht dabei dem Titel des Moduls. Als zusätzliches Hilfsmittel bei der Orientierung dient die Modulnummer (mawi-… oder BWL-…).

Alle Prüfungsleistungen sind grundsätzlich verpflichtend und werden benotet. Abweichungen hiervon werden unter dem Punkt Prüfungsleistung aufgeführt.

Die Modulnote ergibt sich grundsätzlich zu 100% aus der Note der Prüfung für ein Modul. Abweichungen hiervon werden ebenfalls unter dem Punkt Prüfungsleistung aufgeführt.

Alle Modulnoten werden mit ihren Kreditpunkten gewichtet in die Berechnung der Abschlussnote mit einbezogen, sofern sie eine Note haben. Dies gilt auch für die Bachelorarbeit. Eine Beispielrechnung findet sich in der Fachprüfungsordnung.

Einstufung der Lernziele

Die Lernziele in diesem Modulhandbuch wurden auf Basis der „Bloom’sche Taxonomie“ definiert. Hierbei liegt eine folgende Abstufung zu Grunde:

Inhalt

Allgemeine Bemerkungen .. 2
Module... 2
Kreditpunkte.. 2
Prüfungen .. 3
Einstufung der Lernziele .. 3

PFLICHTMODULE ... 5
Physik 1: Mechanik und Wärmelehre ... 6
Mathematik für Materialwissenschaftler 1 ... 8
Einführung in die Materialwissenschaft für Wirtschaftsingenieure 1 .. 10
Externes Rechnungswesen .. 13
Einführung in die Betriebswirtschaftslehre .. 15
Physik 2: Elektrizitätslehre und Optik ... 17
Mathematik für Materialwissenschaftler 2 ... 19
Einführung in die Materialwissenschaft für Wirtschaftsingenieure 2 .. 21
Physikalische Chemie 1 .. 23
Entscheidungsrechnung ... 26
Materialwissenschaft 1 .. 28
Grundpraktikum für Wirtschaftsingenieure Materialwissenschaft ... 31
Physikalisches Anfängerpraktikum Teil 1 ... 34
Einführung in die Volkswirtschaftslehre .. 36
Materialwissenschaft 2 ... 38
Materialanalytik ... 41
Werkstoffe 1 .. 44
Physikalisches Anfängerpraktikum Teil 2 ... 47
Projektmanagement .. 49
Werkstoffe 2 .. 51
Analytikpraktikum für Wirtschaftsingenieure ... 55
Statistische Methoden ... 58
Projekt ... 60
Praxisphase .. 62
Bachelorarbeit .. 64

WAHLPFLICHTMODULE DER BETRIEBSWIRTSCHAFTSLEHRE ... 66
Marketing.. 67
Produktion und Logistik .. 69
Grundlagen des Technologiemanagements .. 71
Management ... 73
Grundlagen des Entrepreneurship .. 75
Operations Research ... 77
Leadership in Organizations ... 79
Innovationsmanagement: Prozesse und Methoden .. 81
Pflichtmodule
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Physik 1: Mechanik und Wärmelehre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>mawi-101</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>mathematisch-naturwissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>Physik1</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. K. Rätzke</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Vorlesung: Prof. Dr. M. Bauer</td>
</tr>
<tr>
<td></td>
<td>Übungen: Prof. Dr. K. Rätzke und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 1. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengänge B.Sc. Materialwissenschaft und B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahl-pflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
<td>Physik 1: Mechanik und Wärmelehre (mnf-phys-101)</td>
<td>Pflicht</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Praktische Übungen</td>
<td>Physik für Materialwissenschaftler</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th>75 h Vorlesung 30 h Übungen 30 h Eigenstudium 45 h Nacharbeiten 180 h Gesamtaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreditpunkte</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
</tr>
</tbody>
</table>
| Studienbegleitende Leistungen | Lösung von Übungsaufgaben
Vorstellen der Lösungen |
|-------------------------------|-----------------------------|
| Prüfungsleistungen | Klausur oder mündliche Prüfung:
Physik 1: Mechanik und Wärmelehre |
| **Pflicht/Wahl-pflicht** | **benotet/unbenotet**
Gewichtung |
| Pflicht | benotet |
| 100% | |
| Lernziele / Kompetenzen | Die Studierenden können Grundzüge der Mechanik und
Wärmelehre zusammenfassend wiedergeben, auf einfache
Beispiele anwenden, konkrete Werte berechnen und selbständig
mit Literaturquellen weitergehende Probleme lösen. Die
Studierenden können ihren Lösungsweg begründen und
präsentieren. Ihnen sind Schlüsselexperimente in diesem
Bereich (Schiefers Wurf, Kreisel, Thermometer, etc) bekannt, die
sie beschreiben und begründen können. |
| Inhalt | Mechanik
- Koordinaten- und Bezugsysteme
- Kinematik
- spezielle Relativitätstheorie
- Dynamik, Newtonsche Gesetze
- Schwingungen
- Hydrostatik und -dynamik, Aerodynamik
Wärmelehre
- Gasgesetze
- Grundzüge der statistischen Thermodynamik
- Transportphänomene
- Wärmestrahlung
Akustik |
| Medienformen | Tafel und Kreide, Physikexperimente live. Unterstützung durch
Leinwandprojektion des Experimentablaufs (Videokameras)
und der Messanzeigen, Leinwandprojektion von Graphiken,
Tabellen und Funktionsverläufen. |
| Literatur | Demtröder, Band I und II; Springer (2005)
Bergmann-Schäfer, Band I, II und III; de Gruyter (1998-
2006)
Feyman Lectures, Band I und II; Oldenbourg (2001)
weitere Standardwerke der Physik wie Gerthsen, Tipler,
Halliday und Resnik |
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Mathematik für Materialwissenschaftler 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>mawi-102</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>mathematisch naturwissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>Mathe1</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. R. Adelung</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. R. Adelung und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 1. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengänge B.Sc. Materialwissenschaft und B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/ Wahl-pflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>Mathematik für Materialwissenschaftler 1</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>Praktische Übungen</td>
<td></td>
<td>Mathematik für Materialwissenschaftler 1</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 h Vorlesung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 h Übungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 h Eigenstudium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90 h Nacharbeiten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>240 h Gesamtaufwand</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte</th>
<th></th>
<th>8 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td></td>
<td>Zur Vorbereitung empfiehlt sich der Besuch des „Vorkurs Schulmathematik“, der vor Studienbeginn gemeinsam von der Physik und der Technischen Fakultät angeboten wird.</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td></td>
<td>Lösen von Übungsaufgaben Vorstellen der Lösungen</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>Klausur oder mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet Gewichtung</td>
<td></td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
<td>100%</td>
</tr>
</tbody>
</table>

|-------------------------|--|

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Volumenintegrale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotationskörper</td>
</tr>
<tr>
<td></td>
<td>Koordinatensysteme</td>
</tr>
<tr>
<td></td>
<td>Kugelkoordinaten</td>
</tr>
<tr>
<td></td>
<td>Zylinderkoordinaten</td>
</tr>
<tr>
<td></td>
<td>Funktionsraum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spezielle Funktionen</th>
<th>Gauß</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gamma</td>
</tr>
<tr>
<td></td>
<td>erf(x)</td>
</tr>
<tr>
<td></td>
<td>Delta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differentialgleichungen</th>
<th>Linear 1. Art, 2. Art /einfache gekoppelte</th>
</tr>
</thead>
</table>

Vektoranalyse	Potentialfelder
	Vektorfelder (Satz v. Gauß, Stokes)
	Linienintegral
	Gradient
	Divergenz
	Rotation
	Tensorrechnung

<table>
<thead>
<tr>
<th>Statistik/Fehlerrechnung</th>
<th>Gaußsche Fehlerfortpflanzung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gaußkurve</td>
</tr>
<tr>
<td></td>
<td>mittlere Abweichung des Mittelwertes</td>
</tr>
<tr>
<td></td>
<td>Systematischer und statistischer Fehler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
<th>Beamer, Tafel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung</td>
<td>Einführung in die Materialwissenschaft für Wirtschaftsingenieure 1</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>mawi-107</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>materialwissenschaftliche Grundlage</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>EMaWiWiling1</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. K. Rätzke</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. K. Rätzke Dr. O. Riemenschneider</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 1. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengang B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahl-pflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Einführung in die Materialwissenschaft 1</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Einführung in die Materialwissenschaft für Wirtschaftsingenieure 1</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Praktische Übungen</td>
<td>Einführung in die Materialwissenschaft für Wirtschaftsingenieure 1</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Arbeitsaufwand

- 60 h Vorlesung
- 15 h Übungen
- 45 h Eigenstudium
- 60 h Nacharbeiten
- 180 h Gesamtaufwand

Kreditpunkte

- 6 ECTS

Voraussetzungen laut Prüfungsordnung

- keine
Empfohlene Voraussetzungen

Studienbegleitende Leistungen
Lösen von Übungsaufgaben
Vorstellen der Lösungen

Prüfungsleistungen
<table>
<thead>
<tr>
<th>Pflicht/Wahlpflicht</th>
<th>benotet/unbenotet</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>benotet</td>
<td>100%</td>
</tr>
</tbody>
</table>

Lernziele / Kompetenzen

Inhalt
Das Modul gibt eine Einführung in die Begrifflichkeiten und die Grundzüge der Materialwissenschaft mit folgenden Themen:
- Aufbau der Materie
- ideale Kristalle
- reale Kristalle
- Gitterbaufehler
- Periodensystem
- Elementeigenschaften
- Reaktionstypen
- Säuren/Basen
- pH-Wert
- Nomenklatur
- Aufbau mehrphasiger Stoffe, Gefüge
- Grundlagen der Wärmebehandlung
- Thermodynamik, Phasendiagramme, Kinetik
- Elastisches/plastisches Verhalten
- Bruch
- Plastische Verformung und Verfestigung

Medienformen
Tafel, Kreide, Overheadfolien, PowerPoint-Präsentation, Vorlesungsunterlagen als Papierausdruck, Laborbesichtigung, interaktive Kommunikation während und außerhalb der Vorlesungszeit.

Literatur
- E. Hornbogen, Werkstoffe, Springer Verlag
- H.-J. Bargel Werkstoffkunde, Springer Verlag
<table>
<thead>
<tr>
<th>Modulhandbuch</th>
<th>Pflichtmodule</th>
<th>Mawi-107</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• C.R. Barrett et al., The Principles of Engineering Materials, Prentice Hall</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Externes Rechnungswesen</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Modulnummer</td>
<td>BWL-ERW</td>
<td></td>
</tr>
<tr>
<td>Modulniveau</td>
<td>Wirtschaftswissenschaftliche Grundlagen</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWL-ERW</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Betriebswirtschaftslehre</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>M. Sc. H. Drews</td>
<td></td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>M. Sc. H. Drews</td>
<td></td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 1. Semester</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengänge B.Sc. Wirtschaftsingenieur Materialwissenschaft, B.Sc. Wirtschaftsingenieur Elektrotechnik und Informationstechnik, B.Sc. Wirtschaftschemie und B.Sc. Wirtschaftsinformatik</td>
<td></td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Art</td>
<td>Titel</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Externes Rechnungswesen</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Übungen</td>
<td>Externes Rechnungswesen</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>30 h Vorlesung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 h Übungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>105 h Eigenstudium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 h Gesamtaufwand</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 ECTS</td>
<td></td>
</tr>
<tr>
<td>Voraussetzung nach Prüfungsordnung</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Lösen von Übungsaufgaben Vorstellen der Lösungen</td>
<td></td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>Schriftliche Prüfung</td>
<td></td>
</tr>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
<td>Gewichtung</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
<td>100%</td>
</tr>
</tbody>
</table>

Lernziele / Kompetenzen

Inhalt

- Grundlagen und Datenbasis der externen Rechnungslegung
- Regeln des Rechnungswesens: Allgemeine Grundlagen
- System und Technik der Buchhaltung
- Verbuchung laufender Geschäftsvorfälle
- Vorbereitende Abschlussbuchungen und Abschluss
- Allgemeine Ansatz- und Bewertungs- und Gliederungsvorschriften
- Gewinn- und Verlustrechnung

Medienformen

Beamer, Tafel

Literatur

Jede Einstiegsliteratur zum betrieblichen Rechnungswesen, z.B.
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Einführung in die Betriebswirtschaftslehre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>BWL-EinfBWL</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>Wirtschaftswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWL-EinfBWL</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. A. Walter</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. A. Walter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 1. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengänge B.Sc. Wirtschaftsingenieur Materialwissenschaft, B.Sc. Wirtschaftsingenieur Elektrotechnik und Informationstechnik, B.Sc. Wirtschaftschemie und B.Sc. Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahl-pflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>Einführung in die Betriebswirtschaftslehre</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Übungen</td>
<td></td>
<td>Einführung in die Betriebswirtschaftslehre</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Arbeitsaufwand
20 h Vorlesung
10 h Übungen
120 h Eigenstudium
150 h Gesamtaufwand

Kreditpunkte
5 ECTS

Voraussetzungen laut Prüfungsordnung
keine

Empfohlene Voraussetzungen
keine

Studienbegleitende Leistungen
Lösen von Übungsaufgaben
Vorstellen der Lösungen
<table>
<thead>
<tr>
<th>Prüfungsleistungen</th>
<th>Schriftliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
</tr>
<tr>
<td>Gewichtung</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele / Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden aus technisch und naturwissenschaftlich orientierter Studiengängen kennen die grundlegende Denkweisen der Betriebswirtschaftslehre. Sie können wesentliche Fachbegriffe ebenso wie grundlegende Konzepte auf aktuelle Fragestellungen übertragen. Sie sind fähig, einen Bezug zwischen theoretisch vermittelten Kursinhalten und unternehmerischer Praxis herzustellen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Betriebe und innovative Unternehmen</td>
</tr>
<tr>
<td>• Konfliktregulierung und Rechtsformen</td>
</tr>
<tr>
<td>• Die Unternehmung aus mikroökonomischer Perspektive</td>
</tr>
<tr>
<td>• Ansätze der Entscheidungsfindung</td>
</tr>
<tr>
<td>• Strukturen der Organisation</td>
</tr>
<tr>
<td>• Führung als Motivationsaufgabe</td>
</tr>
<tr>
<td>• Führung als Gestaltungsaufgabe</td>
</tr>
<tr>
<td>• Strategische Zielplanung</td>
</tr>
<tr>
<td>• Strategische Analyse und Prognose</td>
</tr>
<tr>
<td>• Strategieformulierung und -bewertung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
<th>Beamer, Tafel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Modulnummer</td>
</tr>
<tr>
<td>Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>Dauer</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
</tr>
<tr>
<td>Dozent(in)</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Bewertung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/ Wahl-pflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
<td>Physik 2: Elektrizitätslehre und Optik</td>
<td>Pflicht</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Praktische Übungen</td>
<td>Physik 2: Elektrizitätslehre und Optik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

| Arbeitsaufwand | 75 h Vorlesung 30 h Übungen 30 h Eigenstudium 45 h Nacharbeiten 180 h Gesamtaufwand |
|----------------------|--|-----------------------|-----|
| Kreditpunkte | 6 ECTS |
| Voraussetzungen laut Prüfungsordnung | keine |
| Empfohlene Voraussetzungen | Zur Vorbereitung empfiehlt sich der Besuch des „Vorkurs Schulmathematik“, der 2 Wochen vor Studienbeginn gemeinsam von der Physik und der Technischen Fakultät angeboten wird. |
| Studienbegleitende Leistungen | Lösung von Übungsaufgaben
Vorstellen der Lösungen |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistungen</td>
<td>Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
</tr>
<tr>
<td>Lernziele / Kompetenzen</td>
<td>Die Studierenden können Grundzüge der Elektrizitätslehre und Optik zusammenfassend wiedergeben, auf einfache Beispiele anwenden, konkrete Werte berechnen und selbständig mit Literaturquellen weitergehende Probleme lösen. Die Studierenden können ihren Lösungsweg begründen und präsentieren. Ihnen sind Schlüsselfexperimente in diesem Bereich (z.B. Parallel- Serien schaltung, Stromkreise, im Wechselstrom, Milikan und Michelson Versuch Linsensysteme etc) bekannt, welche sie beschreiben und begründen können.</td>
</tr>
</tbody>
</table>
| Inhalt | Elektrizitätslehre
• Elektrostatik
• Magnetostatik
• Schwingungen und Schwingkreise
• Die Maxwellschen Gleichungen
• elektromagnetische Wellen
Optik
• Übergang Elektrodynamik – Optik
• geometrische Optik
• Beugung und Wellenphänomene
• optische Instrumente
• Fourieroptik |
| Literatur | Demtröder, Band I und II; Springer (2005)
Bergmann-Schäfer, Band I, II und III; de Gruyter (1998-2006)
Feyman Lectures, Band I und II; Oldenbourg (2001) weitere Standardwerke der Physik wie Gerthsen, Tipler, Halliday und Resnik |
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Mathematik für Materialwissenschaftler 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>mawi-202</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>mathematisch-naturwissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>Mathe2</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. R. Adelung</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. R. Adelung und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 2. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengänge B.Sc. Materialwissenschaft und B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Art</td>
<td>Titel</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Mathematik für Materialwissenschaftler 2</td>
</tr>
<tr>
<td>Praktische Übungen</td>
<td>Mathematik für Materialwissenschaftler 2</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>60 h Vorlesung</td>
</tr>
<tr>
<td></td>
<td>30 h Übungen</td>
</tr>
<tr>
<td></td>
<td>60 h Eigenstudium</td>
</tr>
<tr>
<td></td>
<td>90 h Nacharbeiten</td>
</tr>
<tr>
<td></td>
<td>240 h Gesamtaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>8 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Mawi-102: Mathematik für Materialwissenschaftler 1</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Lösen von Übungsaufgaben Vorstellen der Lösungen</td>
</tr>
</tbody>
</table>
Prüfungsleistungen
- Klausur oder mündliche Prüfung

<table>
<thead>
<tr>
<th>Pflicht/Wahlpflicht</th>
<th>benotet/unbenotet</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>benotet</td>
<td>100%</td>
</tr>
</tbody>
</table>

Lernziele / Kompetenzen
Die Studierenden beherrschen die weiterführenden Inhalte der höheren Mathematik die unten gelistet sind. Sie können diese anwenden, um sicher und effektiv Problemen zu lösen (Wissen, Verständnis).
Sie können mathematische Beschreibungen, wie sie in der Materialwissenschaft, Elektrotechnik, Physik oder Thermodynamik vorkommen, verstehen und analysieren. Die Studierenden können diese mit ihrem Wissen in neuartigen Zusammenhängen verbinden (Analysieren, Anwenden).
Sie sind in der Lage, neue mathematische Aussagen zu entwickeln, zu prüfen oder zu widerlegen (Beurteilung).

Inhalt
- **Verteilungsfunktionen**
 - Boltzmann
 - Maxwell
 - Bose-Einstein
 - Fermi
 - Dirac
- **Reihenentwicklungen**
 - Taylor
 - Fourier
- **Komplexe Zahlen**
 - Komplexe Funktionen
 - Einheitskreis
- **Transformationen**
 - Fourier
 - Laplace
 - Legendre
- **Numerik**
 - Newtonverfahren
 - Gradientenverfahren
- **Informatik**
 - Zahlensystem

Medienformen
- Beamer, Tafel

Literatur
- Joos Richter: Höhere Mathematik. ("Höhere Mathematik für den Praktiker")
- Bronstein: Taschenbuch der Mathematik.
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Einführung in die Materialwissenschaft für Wirtschaftsingenieure 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>mawi-204</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>materialwissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>EMaWiWiing2</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. K. Rätzke</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. K. Rätzke</td>
</tr>
<tr>
<td>Dr. O. Riemenschneider</td>
<td></td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 2. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengang B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Art</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Einführung in die Materialwissenschaft 2</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Einführung in die Materialwissenschaft für Wirtschaftsingenieure 2</td>
</tr>
<tr>
<td>Praktische Übungen</td>
<td>Einführung in die Materialwissenschaft für Wirtschaftsingenieure 2</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>60 h Vorlesung</td>
</tr>
<tr>
<td></td>
<td>15 h Übungen</td>
</tr>
<tr>
<td></td>
<td>45 h Eigenstudium</td>
</tr>
<tr>
<td></td>
<td>60 h Nacharbeiten</td>
</tr>
<tr>
<td></td>
<td>180 h Gesamtaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen laut Prüfungsordnung</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Erfolgreiche Teilnahmen an „Einführung in die Materialwissenschaft für Wirtschaftsingenieure 1“. Grundkenntnisse Differential- und Integralrechnung, Differenzieren, partielle Ableitung, Differentialgleichungen Grundlagen der organischen und Polymerchemie</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Lösen von Übungsaufgaben Vorstellen der Lösungen</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
</tr>
<tr>
<td>Inhalt</td>
<td>Das Modul gibt eine Einführung in die Begrifflichkeiten und die Grundzüge der Materialwissenschaft mit folgenden Themen:</td>
</tr>
<tr>
<td></td>
<td>• Kohlenstoffchemie</td>
</tr>
<tr>
<td></td>
<td>• Funktionelle Gruppen</td>
</tr>
<tr>
<td></td>
<td>• Reaktionstypen</td>
</tr>
<tr>
<td></td>
<td>• Polymerisation</td>
</tr>
<tr>
<td></td>
<td>• Naturstoffe</td>
</tr>
<tr>
<td></td>
<td>• Chemische und tribologische Eigenschaften</td>
</tr>
<tr>
<td></td>
<td>• Elektronische Eigenschaften</td>
</tr>
<tr>
<td></td>
<td>• Leitfähigkeit in Metallen</td>
</tr>
<tr>
<td></td>
<td>• freies Elektronengas</td>
</tr>
<tr>
<td></td>
<td>• Halbleiter</td>
</tr>
<tr>
<td></td>
<td>• Bändermodell</td>
</tr>
<tr>
<td></td>
<td>• Eigen – Fremdleitung</td>
</tr>
<tr>
<td></td>
<td>• Polymerwerkstoffe</td>
</tr>
<tr>
<td></td>
<td>• Verbundwerkstoffe</td>
</tr>
<tr>
<td></td>
<td>• Umformen</td>
</tr>
<tr>
<td></td>
<td>• Spezielle Werkstoffe</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Tafel, Kreide, Overheadfolien, PowerPoint-Präsentation, Vorlesungsunterlagen als Papierausdruck, Laborbesichtigung, interaktive Kommunikation während und außerhalb der Vorlesungszeit</td>
</tr>
<tr>
<td>Literatur</td>
<td>• Hornbogen, Werkstoffe</td>
</tr>
<tr>
<td></td>
<td>• Hans-Jürgen Bargel Werkstoffkunde</td>
</tr>
<tr>
<td></td>
<td>• C.R. Barrett et al.: The Principles of Engineering Materials</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Physikalische Chemie 1</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>chem0204</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>mathematisch-naturwissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PC1</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Mathematisch-Naturwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Physikalische Chemie</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Direktoren des Instituts für Physikalische Chemie</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>wechselnde Dozenten der Physikalischen Chemie</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 2. Semester</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Art</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Physikalische Chemie 1</td>
</tr>
<tr>
<td>Übungen</td>
<td>Physikalische Chemie 1</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>42 h Vorlesung 14 h Übung 124 h Eigenstudium 180 h Gesamtaufwand</td>
</tr>
<tr>
<td></td>
<td>Als Berechnungsgrundlage dient hier eine Semester mit 14 Semesterwochen.</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
</tr>
</tbody>
</table>
Pflichtmodule

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>keine</td>
</tr>
</tbody>
</table>

Prüfungsleistungen

Die Gesamtpunktzahl \(P, \text{ in } \% \) wird nach folgender Formel berechnet: \(P = 0,3 \cdot (\%\bar{U}) + 0,3 \cdot (\%T) + 0,4 \cdot (\%K) \)

Das Modul wird bei \(P \geq 60\% \) als bestanden gewertet (Variante 1). Alternativ reicht es zum Bestehen auch aus, wenn in der Klausur mindestens 60\% der möglichen Punkte erreicht werden (Variante 2).

Die Endnote ergibt sich aus der Gesamtpunktzahl \(P \) (Variante 1) bzw. der Punktzahl in der Klausur (Variante 2). Es zählt das Bessere Ergebnis.

<table>
<thead>
<tr>
<th>Art</th>
<th>Pflicht/Wahl-pflicht</th>
<th>benotet/unbenotet</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lösung von Übungsaufgaben</td>
<td>Pflicht</td>
<td>benotet</td>
<td>30%</td>
</tr>
<tr>
<td>Testfragen (14-tägig) zum Verständnis (10 Min.)</td>
<td>Pflicht</td>
<td>benotet</td>
<td>30%</td>
</tr>
<tr>
<td>Klausur am Ende der Vorlesungszeit</td>
<td>Pflicht</td>
<td>benotet</td>
<td>40%</td>
</tr>
</tbody>
</table>

Lernziele / Kompetenzen

Die Studierenden kennen die thermodynamischen Gleichgewichtsbedingungen in verschiedenen Systemen. Sie sind in der Lage, die Zustandsdiagramme von Stoffen und Stoffmischungen und chemische Gleichgewichte quantitativ zu beschreiben, verstehen und vorherzusagen.

Die Studierenden kennen Konzepte zur quantitativen Beschreibung von Stoffeigenschaften und -zuständen und zur Beschreibung und Vorhersage chemischer Gleichgewichte.

Inhalt

- Stoffzustände und Zustandsänderungen: Ideale und reale Gase, kinetische Gastheorie; Zustandsgrößen und Zustandsgleichungen;
- Hauptsätze der Thermodynamik und ihre Anwendung auf reversible und irreversible Prozesse: Innere Energie, Enthalpie, Entropie und Gibbs'sche und Helmholtz'sche Energie;
- Thermodynamische Gleichgewichtsbedingungen, chemisches Potential und chemisches Gleichgewicht;
- Massenwirkungsgesetz und seine Anwendung auf homogene und heterogene Gleichgewichte; Temperatur- und Druckabhängigkeit der Gleichgewichtskonstanten;
- Phasengleichgewichte reiner Stoffe;
- Kolligative Eigenschaften;
- Grundlagen der Mischphasenthermodynamik;
- Gleichgewichtselektrochemie;
- Grundlagen der statistischen Thermodynamik: Statistische Ausgleichsprozesse und Verteilung im Festkörper und idealen Gas, Boltzmann-Ausdruck für die Entropie,
<table>
<thead>
<tr>
<th>Modulhandbuch</th>
<th>Pflichtmodule</th>
<th>chem0204</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boltzmann-Verteilung, Begriff der Zustandssumme, Ergebnisse für die thermodynamischen Zustandsfunktionen.</td>
<td></td>
</tr>
<tr>
<td>Medienformen</td>
<td>Tafel, rechnergestützte Präsentationen (Powerpoint), online abrufbare Skripte</td>
<td></td>
</tr>
</tbody>
</table>
| Literatur | • P. W. Atkins, J. de Paula, Physikalische Chemie, Wiley/VCH, Weinheim,
• G. Wedler, H.-J. Freund, Lehrbuch der Physikalischen Chemie, Wiley/VCH, Weinheim,
• P. W. Atkins, J. de Paula, Physical Chemistry, Freeman, New York,
• Vorlesungsskripte der Dozenten | |
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Entscheidungsrechnungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>BWL-ER</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>Wirtschaftswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWL-ER</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>M. Sc. H. Drews</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>M. Sc. H. Drews</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 2. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengänge B.Sc. Wirtschaftsingenieur Materialwissenschaft, B.Sc. Wirtschaftsingenieur Elektrotechnik und Informationstechnik, B.Sc. Wirtschaftschemie und B.Sc. Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Art</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Entscheidungsrechnungen</td>
</tr>
<tr>
<td>Übungen</td>
<td>Entscheidungsrechnungen</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>20 h Vorlesung, 10 h Übungen, 120 h Eigenstudium, 150 h Gesamtaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Lösen von Übungsaufgaben, Vorstellen der Lösungen</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>Schriftliche Prüfung</td>
</tr>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
</tr>
</tbody>
</table>

Lernziele / Kompetenzen

Inhalt
- Gegenstand der Betriebswirtschaftslehre
- Grundlagen der Entscheidungsfindung
- Planung und Kontrolle als Aufgabe des Managements
- Organisation als Aufgabe des Managements

Medienformen
Beamer, Tafel

Literatur
- Friedl: Kostenrechnung
- Friedl: Controlling.
- Friedl: Kostenmanagement.
- Coenenberg/Fischer/Günther: Kostenrechnung und Kostenanalyse
- Berk/DeMarzo: Grundlagen der Finanzwirtschaft
- Franke/Hax: Finanzwirtschaft des Unternehmens und Kapitalmarkt
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Materialwissenschaft 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>mawi-301</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>materialwissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MaWi1</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. C. Selhuber-Unkel</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. C. Selhuber-Unkel und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 3. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengänge B.Sc. Materialwissenschaft und B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/ Wahl-pflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
<td>Materialwissenschaft 1</td>
<td>Pflicht</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Praktische Übungen</td>
<td>Materialwissenschaft 1</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

| Arbeitsaufwand | 45 h Vorlesung
| | 15 h Übungen
| | 30 h Nacharbeiten
| | 90 h Eigenstudium
| | 180 h Gesamtaufwand |

| Kreditpunkte | 6 ECTS |

| Voraussetzungen laut Prüfungsordnung | keine |

<p>| Empfohlene Voraussetzungen | Die Module „Einführung in die Materialwissenschaft für Wirtschaftsingenieure 1 und 2“, „Physik 1 und 2“, „Mathematik für Materialwissenschaftler 1 und 2“ und „Physikalische Chemie 1“ sollten erfolgreich abgeschlossen sein. |</p>
<table>
<thead>
<tr>
<th>Studienbegleitende Leistungen</th>
<th>Lösen von Übungsaufgaben</th>
<th>Vorstellen der Lösungen</th>
<th>Multiple Choice Tests</th>
<th>Erstellen einer Präsentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistungen</td>
<td>Klausur oder mündliche Prüfung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
<td>Gewichtung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pflicht</td>
<td>benotet</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Inhalt</td>
<td>• Aufbau der Materie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elementare Quantentheorie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bindungspotentials und -typen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kristalle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kristallographie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kristalldefekte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Thermodynamik in statistischer Prägung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hauptsätze der Thermodynamik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Boltzmannverteilung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Phasendiagramme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kinetik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Diffusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• „Random Walk“</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mechanische Eigenschaften</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• elastische Moduln</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bruch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• plastische Verformung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fließspannung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amorphe Materialien</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verformung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gummielastizität</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Medienformen | Das Modul ist komplett mit zahlreichen Ergänzungsmodulen zu Basisbegriffen und weiterführenden Inhalten sowie klassischen Übungsaufgaben und „Multiple Choice“ Aufgaben im Internet verfügbar („Hyperskripte“). In Präsenzunterricht werden die Tafel und ein Beamer benutzt. Präsentationen erfolgen durch PowerPoint und müssen durch schriftliche Ausarbeitungen ergänzt werden.
<table>
<thead>
<tr>
<th>Pflichtmodule</th>
<th>mawi-301</th>
</tr>
</thead>
<tbody>
<tr>
<td>• "Hyperscripte von AMAT"
http://www.tf.uni-kiel.de/matwis/amat/mw1_ge/index.html</td>
<td></td>
</tr>
<tr>
<td>• W. Gonzales-Vinas, H.L. Mancini, An Introduction to Materials Science, Princeton University Press 2004</td>
<td></td>
</tr>
<tr>
<td>• K Stierstadt, Physik der Materie, VCH 1989</td>
<td></td>
</tr>
<tr>
<td>• G. Fasching, Werkstoffe für die Elektrotechnik: Mikrophysik, Struktur, Eigenschaften, Springer 1994</td>
<td></td>
</tr>
<tr>
<td>• H. G. Rubahn, Nanophysik und Nanotechnologie, Teubner 2002</td>
<td></td>
</tr>
<tr>
<td>• Bergmann-Schaefer, Lehrbuch der Experimentalphysik, Band 6 Festkörper, de Gruyter 1992</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Grundpraktikum für Wirtschaftsingenieure Materialwissenschaft</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>mawi-307</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>fachspezifische Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>GP Wilng MaWi</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Dr. O. Riemenschneider</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Dr. O. Riemenschneider und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 2. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengang B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>unbenotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahlpflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Grundpraktikum für Wirtschaftsingenieure Materialwissenschaft</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Arbeitsaufwand	30 h Praktikum
	15 h Vorbereitung
	75 h Nacharbeiten
	120 h Gesamtaufwand

| Kreditpunkte | 4 ECTS |
| Voraussetzungen laut Prüfungsordnung | keine |

Empfohlene Voraussetzungen
Das Modul „Einführung in die Materialwissenschaft für Wirtschaftsingenieure 1 und 2“ sollte erfolgreich abgeschlossen sein.
<table>
<thead>
<tr>
<th>Studienbegleitende Leistungen</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistungen</td>
<td>8 Teste inklusive mündliche Versuchsvorprüfung (Kolloquium), Versuchsaufbau und -durchführung und Protokollkorrektur.</td>
</tr>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>Pflicht</td>
<td>unbenotet</td>
</tr>
<tr>
<td>Gewichtung</td>
<td>100%</td>
</tr>
</tbody>
</table>

Lernziele / Kompetenzen

Inhalt

Die Durchführung der Experimente, die mündlichen Versuchsprüfungen sowie die Abgabe und Korrektur der technischen Berichte erfolgt in Gruppen 2-3 Studierenden. Es müssen 8 Versuche aus folgendem Angebot durchgeführt:

- Phasenumwandlung, Gefüge und Eigenschaften
- Spannung und Dehnung
- Schlagartige Belastung
- Druckfestigkeit
- Korrosion
- Ultraschall
- Metallographie
- Schmelzen und Erstarren
- Härten
- Alterung
- Ausscheidungsvorgänge
- Sensoren

Medienformen

Versuchsaufbauten, Anleitungen

Literatur

Versuchsanleitungen im Internet unter http://www.tf.uni-kiel.de/servicezentrum/de/studium/praktika mit weiterführenden Literaturhinweisen.
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Physikalisches Anfängerpraktikum Teil 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es gilt die aktuelle Version des anbietenden Faches! Dieser Auszug dient nur zur Information.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Phys-mawi-403</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Modulniveau</td>
<td>mathematisch-naturwissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PhysPrak1</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Mathematisch-Naturwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für experimentelle und angewandte Physik</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Dr. V. de Manuel Gonzalez</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Dr. V. de Manuel Gonzalez und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 3. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengänge B.Sc. Materialwissenschaft, B.Sc. Wirtschaftsingenieur Materialwissenschaft und B.Sc. Physik</td>
</tr>
<tr>
<td>Bewertung</td>
<td>unbenotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Art</td>
</tr>
<tr>
<td>Praktikum</td>
<td>Physikalisches Anfängerpraktikum Teil 1</td>
</tr>
<tr>
<td>Seminar</td>
<td>Proseminar zum physikalischen Anfängerpraktikum Teil 1</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>84 h Praktikum</td>
</tr>
<tr>
<td></td>
<td>270 h Gesamtaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>Die Module mawi-101 und mawi-201 sollten erfolgreich abgeschlossen sein.</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>keine</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>4 mündliche Prüfgespräche, 8-10 Testate inklusive Kolloquium Versuchsaufbau und -durchführung und Protokollkorrektur.</td>
</tr>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>Gewichtung</td>
<td></td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
</tr>
<tr>
<td>Inhalt</td>
<td>Versuche aus den Gebieten</td>
</tr>
<tr>
<td></td>
<td>• Optik</td>
</tr>
<tr>
<td></td>
<td>• Wärmelehre</td>
</tr>
<tr>
<td></td>
<td>• Atomphysik</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Gedruckte Versuchsanleitungen, z. T. selbst aufzubauende physikalische Experimente</td>
</tr>
<tr>
<td>Literatur</td>
<td>• Walcher: Praktikum der Physik (Teubner-Verlag)</td>
</tr>
<tr>
<td></td>
<td>• Westphal: Physikalisches Praktikum (Vieweg-Verlag)</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Einführung in die Volkswirtschaftslehre</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>VWL-EVWL</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>Wirtschaftswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>VWL-EVWL</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. K. Rehdanz</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. K. Rehdanz, Dr. N. Waidlein</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 3. Semester</td>
</tr>
<tr>
<td>Bewertung</td>
<td>Benotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Übungen</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Arbeit aufwand</td>
<td>60 h Vorlesung 30 h Übungen 210 h Eigenstudium 300 h Gesamtaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>10 ECTS</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Lernziele / Kompetenzen</td>
<td>Die Studierenden kennen die wichtigsten mikro-, makro-, und</td>
</tr>
</tbody>
</table>
finanzwissenschaftlichen Grundbegriffen der Volkswirtschaftslehre und sind mit volkswirtschaftlichem Denken vertraut.

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Mikroökonomik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Einführung in die Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>• Angebot und Nachfrage: Wie Märkte Funktionieren</td>
</tr>
<tr>
<td></td>
<td>• Märkte, Effizienz und Wohlfahrt</td>
</tr>
<tr>
<td></td>
<td>• Ökonomik des öffentlichen Sektors</td>
</tr>
<tr>
<td></td>
<td>• Ineffizienz von Märkten</td>
</tr>
<tr>
<td></td>
<td>• Unternehmerverhalten und Marktstrukturen</td>
</tr>
<tr>
<td></td>
<td>• Handel</td>
</tr>
<tr>
<td>Makroökonomik:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Makroökonomische Daten</td>
</tr>
<tr>
<td></td>
<td>• Realökonomische Entwicklung auf lange Sicht</td>
</tr>
<tr>
<td></td>
<td>• Gesamtwirtschaftliche Ersparnis und Investitionen</td>
</tr>
<tr>
<td></td>
<td>• Zinssätze, Geld und Preise auf lange Sicht</td>
</tr>
<tr>
<td></td>
<td>• Kurzfristige wirtschaftliche Schwankungen</td>
</tr>
<tr>
<td></td>
<td>• Grundsätzliches über die offene Volkswirtschaft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienbegleitende Leistungen</th>
<th>Lösung von Übungsaufgaben</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorstellen der Lösungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsleistungen</th>
<th>Schriftliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>Gewichtung</td>
<td></td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
</tr>
<tr>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
<th>Beamer, Tafel</th>
</tr>
</thead>
</table>

37
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Materialwissenschaft 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>mawi-412</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>materialwissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MaWi2</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. C. Selhuber-Unkel</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. C. Selhuber-Unkel und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 4. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengänge B.Sc. Materialwissenschaft und B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/ Wahl- pflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
<td>Materialwissenschaft 2</td>
<td>Pflicht</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Praktische Übungen</td>
<td>Materialwissenschaft 2</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th>45 h Vorlesung 15 h Übungen 30 h Nacharbeiten 90 h Eigenstudium 180 h Gesamtaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreditpunkte</td>
<td>6 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen laut Prüfungsordnung</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Die Module „Einführung in die Materialwissenschaft für Wirtschaftsingenieure 1 und 2“, „Physik 1 und 2“, „Mathematik für Materialwissenschaftler 1 und 2“ und „Physikalische Chemie 1“ sollten erfolgreich abgeschlossen sein.</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Lösen von Übungsaufgaben Vorstellen der Lösungen</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>Pflichtmodule</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Erstellen einer Präsentation</td>
<td>Multiple Choice Tests</td>
</tr>
<tr>
<td>Klausur oder mündliche Prüfung</td>
<td>Pflicht/Wahlpflicht</td>
</tr>
</tbody>
</table>

Lernziele / Kompetenzen

Inhalt

- Leitfähigkeit allgemein
- Streuung und Beweglichkeit
- Hall-Effekt
- Freies Elektronengas
- Zustandsdichte und Fermiverteilung
- Schwingungen und Wellen
- Wellen in Kristallen
- reziprokes Gitter
- Bragg-Gesetz
- Strukturanalyse
- Periodisches Potential
- Entstehung von Energieböndern
- Klassifizierung von Leitern, Halbleitern und Isolatoren
- Erhaltungssätze
- Band-Band Übergänge
- Halbleiter
- intrinsische Ladungsträgerdichte
- Dotierung
- Fermienergie
- Lebensdauer
dynamisches Ladungsträgergleichgewicht
- Halbleiterbauelemente
- pn-Übergang
- Kennlinie
- Solarzelle
- Bipolartransistor
- MOS Transistor

Medienformen

Das Modul ist komplett mit zahlreichen Ergänzungsmodulen zu Basisbegriffen und weiterführenden Inhalten sowie klassischen Übungsaufgaben und „Multiple Choice“ Aufgaben im Internet verfügbar („Hyperskripte“).
In Präsenzunterricht werden Tafel und Beamer benutzt. Präsentationen erfolgen durch PowerPoint und müssen durch schriftliche Ausarbeitungen ergänzt werden.

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>
| • "Hyperscripte von AMAT"
 http://www.tf.uni-kiel.de/matwis/amat/mw2_ge/index.html |
<p>| • W. Gonzales-Vinas, H.L. Mancini, An Introduction to Materials Science, Princeton University Press 2004 |
| • K Stierstadt, Physik der Materie, VCH 1989 |
| • G. Fasching, Werkstoffe für die Elektrotechnik: Mikrophysik, Struktur, Eigenschaften, Springer 1994 |
| • H. G. Rubahn, Nanophysik und Nanotechnologie, Teubner 2002 |
| • Bergmann-Schaefer, Lehrbuch der Experimentalphysik, Band 6 Festkörper, de Gruyter 1992 |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Materialanalytik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>mawi-420</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>materialwissenschaftliche Vertiefung</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MatAna</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. L. Kienle</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. L. Kienle und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 4. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengänge B.Sc. Materialwissenschaft und B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahlpflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Materialanalytik</td>
<td>Pflicht</td>
<td>3</td>
</tr>
<tr>
<td>Praktische Übungen</td>
<td>Materialanalytik</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Arbeitsaufwand

- 45 h Vorlesung
- 15 h Übung
- 30 h Vorbereitung
- 60 h Nacharbeiten
- 150 h Gesamtaufwand

Kreditpunkte

- 5 ECTS

Voraussetzungen laut Prüfungsordnung

- keine

Empfohlene Voraussetzungen

Die Module „Einführung in die Materialwissenschaft für Wirtschaftsingenieure 1 und 2“, „Physik 1 und 2“, „Physikalische Chemie 1“, „Mathematik für Materialwissenschaftler 1 und 2“ sollten erfolgreich abgeschlossen sein. Außerdem sollten die Inhalte der ersten beiden Semester der Modulreihe „Materialwissenschaft“ bekannt sein.
<table>
<thead>
<tr>
<th>Studienbegleitende Leistungen</th>
<th>Löschen von Übungsaufgaben; Vorstellen der Lösungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistungen</td>
<td>Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
</tr>
<tr>
<td>Gewichtung</td>
<td>100%</td>
</tr>
</tbody>
</table>

Lernziele / Kompetenzen

Inhalt

- Grundlagen der Wechselwirkung von Teilchen und Strahlung mit Materie
- Elektronenstrahl-Methoden
- Rasterelektronenmikroskopie (SE, BS, EBIC, CL, EDX)
- Elektronenstrahlmikrosonde
- Transmissions-Elektronenmikroskopie
- hochauflösende Verfahren der Abbildung
- analytisches TEM (HRTEM, STEM, EELS, XEDS, CBED)
- Ionenstrahl-Methoden
- Sekundärionen-Massenspektroskopie (SIMS)
- Rutherford-Ionenrückstreuung (RBS)
- Röntgenstrahl-Methoden
- Beugungsmethoden
- Topographie-Methoden
- Absorptionsspektroskopie
- Elektronenspektroskopie-Methoden
- Photoelektronen-Spektroskopie (XPS, UPS, ESCA)
- Auger-Elektronenspektroskopie
- Rastersonden-Methoden
- Rastertunnelmikroskopie
- Tunnelspektroskopie
- Rasterkraftmikroskopie

Medienformen

Beamer, Tafel

Literatur

Ausgewählte Kapitel aus folgenden Büchern:

- E. Fuchs, H. Oppolzer, H. Rehme: Particle Beam Microanalysis - Fundamentals, Methods, Applications VCH 1990
- A R Clarke, C N Eberhardt, Microscopy Techniques for Materials Science, CRC Press 2002
- J. M. Walls (Ed.): Methods of Surface Analysis; Cambridge University Press 1989
- P. Goodhew, J. Humphreys, R. Beanland: Electron Microscopy and Analysis, Taylor and Francis 2001
| • D.J. O’Connor, B. A. Sexton, R. St.C. Smart (Eds.) Surface Analysis Methods in Materials Science, Springer 2003 |
| • H. Bubert and H. Jenett (Eds.) Surface and Thin Film Analysis, WILEY-VCH 2002 |
| • B. Bhushan, H. Fuchs, S. Osaka (Eds.), Applied Scanning Probe Methods, Springer Nanoscience and Technology 2004 |
| • P. F. Fewster, X-ray scattering from semiconductors, Imperial College Press 2000 |
| • A. Putnis: Introduction to Mineral Sciences, Ch.3,4; Cambridge University Press 1992 |

Versuchsanleitungen im Internet unter http://www.tf.uni-kiel.de/servicezentrum/de/studium/praktika mit weiterführenden Literaturhinweisen.
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Werkstoffe 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>mawi-421</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>fachspezifische Vertiefung</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>WeSt1</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. F. Faupel</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Metalle: Prof. Dr. J. McCord und Mitarbeiter Polymere: Prof. Dr. F. Faupel und Mitarbeiter Keramiken: Prof. Dr. E. Quandt und Mitarbeiter Halbleiter: Prof. Dr. R. Adelung und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 4. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengang B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen | *Es müssen zwei Vorlesungen aus dem Angebot und die dazugehörigen Übungen gewählt werden!*

<table>
<thead>
<tr>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahl-Pflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Werkstoffe – Metalle</td>
<td>Wahl-Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Werkstoffe – Polymere</td>
<td>Wahl-Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Werkstoffe – Keramiken</td>
<td>Wahl-Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Werkstoffe – Halbleiter</td>
<td>Wahl-Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Praktische Übungen</td>
<td>Werkstoffe</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Arbeitsaufwand	60 h Vorlesung
	15 h Übung
	30 h Nacharbeiten

44
Modulhandbuch

<table>
<thead>
<tr>
<th>Pflichtmodule</th>
<th>mawi-421</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>45 h Eigenstudium</th>
<th>150 h Gesamtaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreditpunkte</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen laut Prüfungsordnung</th>
<th>keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen</th>
<th>Die Module „Anorganische Chemie“, „Einführung in die Materialwissenschaft für Wirtschaftsingenieure 1 und 2“, „Physik 1 und 2“, „Chemie für Studierende der Materialwissenschaft“, „Physikalische Chemie 1“, „Mathematik für Materialwissenschaftler 1 und 2“ und „Materialwissenschaft 1“ sollten erfolgreich abgeschlossen sein.</th>
</tr>
</thead>
</table>

|------------------------------|--|

<table>
<thead>
<tr>
<th>Prüfungsleistungen</th>
<th>Klausur oder mündliche Prüfungen zu zwei Vorlesung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Pflicht/Wahlpflicht</th>
<th>benotet/unbenotet</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metalle</td>
<td>Wahlpflicht</td>
<td>benotet</td>
<td>50%</td>
</tr>
<tr>
<td>Polymere</td>
<td>Wahlpflicht</td>
<td>benotet</td>
<td>50%</td>
</tr>
<tr>
<td>Keramiken</td>
<td>Wahlpflicht</td>
<td>benotet</td>
<td>50%</td>
</tr>
<tr>
<td>Halbleiter</td>
<td>Wahlpflicht</td>
<td>benotet</td>
<td>50%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele / Kompetenzen</th>
<th>Die Studierenden kennen für alle Materialklassen die Bindungstypen, die Strukturmerkmale auf allen Längenskalen und die relevanten Defekte. Sie sind im Detail mit den mechanischen Eigenschaften vertraut und haben einen ersten Einblick in die funktionellen Eigenschaften bekommen. Sie kennen die Grundzüge der Herstellung und Verarbeitung sowie des Recyclings der einzelnen Materialklassen. Sie sind sich bewusst, dass es Normen für die Werkstoffklassifizierung gibt und wissen im Bedarfsfall, wie und wo sie diese finden. Sie können dieses Wissen anwenden, um für einfache Probleme den richtigen Werkstoff und die richtige Herstellungsmethode auszuwählen und die Mikrostruktur so einzustellen, dass das gewünschte Eigenschaftsprofil erzielt wird. Sie könne zur Lösung eines materialwissenschaftlichen Problems eigenständig Fachliteratur suchen und in Ansätzen kritisch bewerten.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Metalle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Chemische Bindung</td>
</tr>
<tr>
<td></td>
<td>• Kristallstrukturen</td>
</tr>
<tr>
<td></td>
<td>• Thermodynamik von Legierungen</td>
</tr>
<tr>
<td></td>
<td>• Phasendiagramme</td>
</tr>
<tr>
<td></td>
<td>• Mechanische Eigenschaften</td>
</tr>
<tr>
<td></td>
<td>• Thermisch aktivierte Prozesse</td>
</tr>
<tr>
<td></td>
<td>• Erstarrung und Festkörperumwandlung</td>
</tr>
<tr>
<td></td>
<td>• Härten von Legierungen</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Beamer, Tafel</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
<tr>
<td>• Steele, B.C. H. (Hrsg.): Electronic Ceramics; Elsevier Applied Science, London Schaumburg</td>
<td></td>
</tr>
<tr>
<td>• H. Hench, LL (Hrsg.): Keramik; B.G. Teubner, Stuttgart.</td>
<td></td>
</tr>
<tr>
<td>• West, J.K., Principles of Electronic Ceramics; Wiley-Interscience, New York</td>
<td></td>
</tr>
</tbody>
</table>

- Korrosion
- Hochtemperaturoxidation
- Metallverarbeitung

Polymere
- Eigenschaften und Klassifizierung
- Polymersynthese
- Thermodynamik von Polymermischungen
- Kristallisation, Schmelzen und Glasübergang
- Mechanische und rheologische Eigenschaften
- Dielektrische und optische Eigenschaften
- Polymerverarbeitung
- Polymerfilme

Keramiken
- klassischen Herstellung keramischer Werkstoffe
- modernen Methoden der Herstellung keramischer Werkstoffe
- Monolithen
- Dünnschichten
- strukturellen Eigenschaften
- Unterschied zu anderen Werkstoffen
- funktionalen Anwendungen

Halbleiter
- Grundlagen der Bauelementephysik
- Einzelprozesstechnologie
- Prozessintegration
- Mikro- und Nanoelektronische Materialien
- Aspekte der Elektronik
- Aspekte der Plasmonik
- NEMS
- MEMS

Übergreifend
- Werkstoffvergleich
- Wann eignet sich welcher Werkstoff?
- Materialverbunde
- Kostenbetrachtung
- Recycling
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Physikalisches Anfängerpraktikum Teil 2</th>
</tr>
</thead>
</table>
| *Es gilt die aktuelle Version des anbietenden Faches!*
Dieser Auszug dient nur zur Information. |
| Modulnummer | Phys-mawi-503 |
| Modulniveau | mathematisch-naturwissenschaftliche Grundlagen |
| ggf. Kürzel | PhysPrak2 |
| Dauer | 1 Semester |
| Wiederholung im Studienjahr | Sommersemester |
| Modulverantwortliche Fakultät | Mathematisch-Naturwissenschaftliche Fakultät |
| Modulverantwortliches Institut | Institut für experimentelle und angewandte Physik |
| Modulverantwortliche(r) Dozent(in) | Dr. V. de Manuel Gonzalez |
| Dozent(in) | Dr. V. de Manuel Gonzalez und Mitarbeiter |
| Sprache | Deutsch |
| Zuordnung zum Curriculum | Pflichtmodul im 4. Semester |
| Bewertung | unbenotet |

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahlpflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum</td>
<td>Physikalisches Anfängerpraktikum Teil 2</td>
<td>Pflicht</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>Proseminar zum physikalisches Anfängerpraktikum Teil 2</td>
<td>Pflicht</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| Arbeitsaufwand | 90 h Praktikum
15 h Seminar
45 h Eigenstudium
120 h Nacharbeiten
270 h Gesamtaufwand |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreditpunkte</td>
<td>9 ECTS</td>
</tr>
</tbody>
</table>

Voraussetzungen laut Prüfungsordnung
Die Module mawi-101 und mawi-201 sollten erfolgreich abgeschlossen sein.

Empfohlene Voraussetzungen
keine
<table>
<thead>
<tr>
<th>Modulhandbuch</th>
<th>Pflichtmodule</th>
<th>phys-mawi-503</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>4 mündliche Prüfgespräche, 8-10 Testate inklusive Kolloquium Versuchsaufbau und -durchführung und Protokollkorrektur.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td></td>
<td>Pflicht</td>
<td>benotet</td>
</tr>
<tr>
<td>Inhalt</td>
<td>Versuche aus den Gebieten</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mechanik</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elektrizitätslehre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Physik mit dem Computer</td>
<td></td>
</tr>
<tr>
<td>Medienformen</td>
<td>Gedruckte Versuchsanleitungen, z. T. selbst aufzubauende physikalische Experimente</td>
<td></td>
</tr>
<tr>
<td>Literatur</td>
<td>• Walcher: Praktikum der Physik (Teubner-Verlag)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Westphal: Physikalisches Praktikum (Vieweg-Verlag)</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Projektmanagement</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Modulnummer</td>
<td>BWL-ProjMgmt</td>
<td></td>
</tr>
<tr>
<td>Modulniveau</td>
<td>Wirtschaftswissenschaftliche Grundlagen</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWL-ProjMgmt</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Volkswirtschaftslehre</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. C. Schultz</td>
<td></td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. C. Schultz und Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 4. Semester</td>
<td></td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahlpflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>Projektmanagement</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Übungen</td>
<td></td>
<td>Projektmanagement</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 h Vorlesung</td>
<td></td>
</tr>
<tr>
<td>15 h Übungen</td>
<td></td>
</tr>
<tr>
<td>105 h Eigenstudium</td>
<td></td>
</tr>
<tr>
<td>150 h Gesamtaufwand</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ECTS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen laut Prüfungsordnung</th>
<th>keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen</th>
<th>keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studienbegleitende Leistungen</th>
<th>Lösen von Übungsaufgaben Vorstellen der Lösungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistungen</td>
<td>Zusammengesetzte Prüfung aus einer Klausur und einer Hausarbeit.</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Pflicht/Wahlpflicht</td>
</tr>
<tr>
<td>Klausur</td>
<td>Pflicht</td>
</tr>
<tr>
<td>Hausarbeit</td>
<td>Pflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele / Kompetenzen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Relevanz und Grundlagen des Projektmanagements</td>
</tr>
<tr>
<td>• Projektorganisation</td>
</tr>
<tr>
<td>• Projektdefinition</td>
</tr>
<tr>
<td>• Projektstart</td>
</tr>
<tr>
<td>• Projektplanung (Planungsarten und Techniken)</td>
</tr>
<tr>
<td>• Projektcontrolling</td>
</tr>
<tr>
<td>• Risikomanagement und Konfigurationsmanagement</td>
</tr>
<tr>
<td>• Projektabschluss</td>
</tr>
<tr>
<td>• Projektteamarbeit</td>
</tr>
<tr>
<td>• Grundlagen Multiprojektmanagement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer, Tafel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Modulnummer</td>
</tr>
<tr>
<td>Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>Dauer</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
</tr>
<tr>
<td>Dozent(in)</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>Bewertung</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahl-pflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Funktionsmaterialien – Nanomaterialien</td>
<td>Wahl-pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Funktionsmaterialien – Biomaterialien</td>
<td>Wahl-pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Funktionsmaterialien – Magnetische Materialien</td>
<td>Wahl-pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Funktionsmaterialien – Optische Materialien</td>
<td>Wahl-pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Praktische Übungen</td>
<td>Funktionsmaterialien</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

| Arbeitsaufwand | 60 h Vorlesung
15 h Übung
30 h Nacharbeiten |
<table>
<thead>
<tr>
<th>Modulhandbuch</th>
<th>Pflichtmodule</th>
<th>mawi-510</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 h Eigenstudium</td>
<td>150 h Gesamtaufwand</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 ECTS</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Die Module „Chemie für Studierende der Materialwissenschaft“, „Einführung in die Materialwissenschaft für Wirtschaftsingenieure 1 und 2“, „Physik 1 und 2“, „Physikalische Chemie 1“, „Mathematik für Materialwissenschaftler 1 und 2“ und „Materialwissenschaft 1 und 2“ sollten erfolgreich abgeschlossen sein.</td>
<td></td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Lösen von Übungsaufgaben</td>
<td>Vorstellen der Lösungen</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>Klausur oder mündliche Prüfungen zu zwei Vorlesungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Pflicht/Wahl-pflicht</th>
<th>benotet/unbenotet</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanomaterialie</td>
<td>Wahl-pflicht</td>
<td>benotet</td>
<td>50%</td>
</tr>
<tr>
<td>Biomaterialien</td>
<td>Wahl-pflicht</td>
<td>benotet</td>
<td>50%</td>
</tr>
<tr>
<td>Magnetische Materialien</td>
<td>Wahl-pflicht</td>
<td>benotet</td>
<td>50%</td>
</tr>
<tr>
<td>Optische Materialien</td>
<td>Wahl-pflicht</td>
<td>benotet</td>
<td>50%</td>
</tr>
</tbody>
</table>

Lernziele / Kompetenzen

- Nach Abschluss des Submoduls „Nanomaterialien“ ...

Nach Abschluss des Submoduls „Optische Materialien“ besitzen die Studierenden materialspezifische Kenntnisse zur Optik und Optoelektronik sowie Kenntnisse zu deren technologischem Verständnis und zu Anwendungen.

Die Studierenden können ihr erlerntes Wissen gegenüber Spezialisten präsentieren und schriftlich darstellen. Die Studierenden können eigene Stärken und Schwächen ermitteln und sich benötigtes Wissen auch selbstständig aneignen.

Inhalt

Nanomaterialien
- Grenzflächen und Oberflächen
- Dimensionalität
- Fullerene und Nanotubes
- Micro- und Mesoporen
- Core-shell Struktur
- Nanocomposite
- Intercalation
- Nanopatterning
- Self-assembly und self-organization
- Nanoengineering
- Green Nanopatterning
- Green Nanosynthesis

Biomaterialien und Bioinspirierte Materialien
- Biologische Systeme
- Bioinspirierte Systeme
- Grundlagen Anatomie
- Biomaterialklassen
- Oberflächenchemie
- Oberflächenmorphologie

Magnetische Materialien
- Grundlagen
- Geordneter Magnetismus
- Magnetische Anisotropien
- Magnetische Domänen
- Magnetisierungsprozesse
- Weichmagnetische Materialien
- Hartmagnetische Materialien
- Magnetische Datenaufzeichnung

Optische Materialien
- Eigenschaften des Lichts
- Grundbegriffe der Optik
- Optische Materialien für
 - Optische Komponenten
 - Optische Wellenleiter
 - Optoelektronische Bauelemente
<table>
<thead>
<tr>
<th>Medienformen</th>
<th>Beamer und Tafel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur</td>
<td></td>
</tr>
</tbody>
</table>

Übergreifend
- Werkstoffvergleich
- Wann eignet sich welcher Werkstoff?
- Materialverbunde
- Kostenbetrachtung
- Recycling

- Laser
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Analytikpraktikum für Wirtschaftsingenieure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>mawi-516</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>materialwissenschaftliche Vertiefung</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MatAnaPrakWilng</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. L. Kienle</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. L. Kienle und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 5. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengang B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>unbenotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Art</td>
</tr>
<tr>
<td>Praktikum</td>
<td>Analytikpraktikum für Wirtschaftsingenieure</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>45 h Praktikum</td>
</tr>
<tr>
<td></td>
<td>15 h Vorbereitung</td>
</tr>
<tr>
<td></td>
<td>90 h Nacharbeiten</td>
</tr>
<tr>
<td></td>
<td>150 h Gesamtaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>keine</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>7 Testate inklusive mündliche Prüfung (Kolloquium) Versuchsaufbau und –durchführung und Protokollkorrektur.</td>
</tr>
<tr>
<td></td>
<td>Pflicht/Wahlpflicht</td>
</tr>
<tr>
<td>Pflicht</td>
<td>unbenotet</td>
</tr>
<tr>
<td>Inhalt</td>
<td>Die Durchführung der Experimente, die mündlichen Versuchsprüfungen sowie die Abgabe und Korrektur der technischen Berichte erfolgt in Gruppen 2-3 Studierenden. Es müssen 7 Versuche aus folgendem Angebot durchgeführt werden:</td>
</tr>
<tr>
<td></td>
<td>• B501 Konfokales Lichtmikroskop</td>
</tr>
<tr>
<td></td>
<td>• B502 Funkenemissionsspektroskopie</td>
</tr>
<tr>
<td></td>
<td>• B503 Röntgenbeugung</td>
</tr>
<tr>
<td></td>
<td>• B507 UV/VIS Spektroskopie</td>
</tr>
<tr>
<td></td>
<td>• B508 Ellipsometrie</td>
</tr>
<tr>
<td></td>
<td>• B510 Funktionalisierte Oberflächen</td>
</tr>
<tr>
<td></td>
<td>• B511 Rasterelektronenmikroskopie und energiedispersive Röntgenspektroskopie</td>
</tr>
<tr>
<td></td>
<td>• B512 Vibration Sample Magnetometry</td>
</tr>
<tr>
<td></td>
<td>• B513 Transmissionselektronenmikroskopie</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Beamer, Tafel</td>
</tr>
<tr>
<td>Literatur</td>
<td>Ausgewählte Kapitel aus folgenden Büchern:</td>
</tr>
<tr>
<td></td>
<td>• E. Fuchs, H. Oppolzer, H. Rehme: Particle Beam Microanalysis - Fundamentals, Methods, Applications VCH 1990</td>
</tr>
<tr>
<td></td>
<td>• A R Clarke, C N Eberhardt, Microscopy Techniques for Materials Science, CRC Press 2002</td>
</tr>
<tr>
<td></td>
<td>• J. M. Walls (Ed.): Methods of Surface Analysis; Cambridge University Press 1989</td>
</tr>
<tr>
<td></td>
<td>• P. Goodhew, J. Humphreys, R. Beanland: Electron Microscopy and Analysis, Taylor and Francis 2001</td>
</tr>
</tbody>
</table>
• D.J. O’Connor, B. A. Sexton, R. St.C. Smart (Eds.) Surface Analysis Methods in Materials Science, Springer 2003
• H. Bubert and H. Jenett (Eds.) Surface and Thin Film Analysis, WILEY-VCH 2002
• B. Bhushan, H. Fuchs, S. Osaka (Eds.), Applied Scanning Probe Methods, Springer Nanoscience and Technology 2004
• P. F. Fewster, X-ray scattering from semiconductors, Imperial College Press 2000
• A. Putnis: Introduction to Mineral Sciences, Ch.3,4; Cambridge University Press 1992

Versuchsanleitungen im Internet unter http://www.tf.uni-kiel.de/servicezentrum/de/studium/praktika mit weiterführenden Literaturhinweisen.
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Statistische Methoden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>VWL-STATWX</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>Wirtschaftswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>VWL-STATWX</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Volkswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Dr. J. Roestel</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Dr. J. Roestel und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 5. Semester</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Art</td>
</tr>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übungen</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>60 h Vorlesung</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>10 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Lernziele / Kompetenzen</td>
<td>Die Studierenden kennen Methoden, mit denen sich die Struktur eines gegebenen Datensatzes beschreiben und sinnvoll darstellen lässt. Sie wissen, dass die wichtigste Form der Datenverdichtung</td>
</tr>
</tbody>
</table>
ist die Beschreibung der Häufigkeitsverteilungen der erhobenen Merkmale mit Hilfe geeigneter Maßzahlen ist.

<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Häufigkeitsverteilungen und deren Beschreibung (univariat u. multivariat)</td>
</tr>
<tr>
<td>• Wahrscheinlichkeitsrechnung</td>
</tr>
<tr>
<td>• Zufallsvariablen und deren Verteilungen (univariat u. multivariat)</td>
</tr>
<tr>
<td>• Stichprobentheorie</td>
</tr>
<tr>
<td>• Punktschätzung</td>
</tr>
<tr>
<td>• Intervallschätzung</td>
</tr>
<tr>
<td>• Hypothesentests</td>
</tr>
<tr>
<td>• Lineare Regression</td>
</tr>
<tr>
<td>• Varianzanalyse</td>
</tr>
<tr>
<td>• Qualitätskontrolle (opt.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienbegleitende Leistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lösen von Übungsaufgaben</td>
</tr>
<tr>
<td>Vorstellen der Lösungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflicht/Wahlpflicht</th>
<th>benotet/unbenotet</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>benotet</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer, Tafel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fahrmeir, L., Künstler, R., Pigeot, I., und G. Tutz; Statistik, Springer 2016.</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Modulnummer</td>
</tr>
<tr>
<td>Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>Dauer</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
</tr>
<tr>
<td>Dozent(in)</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>Bewertung</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
</tr>
<tr>
<td>Projekt</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Pflicht</td>
</tr>
</tbody>
</table>

Lernziele / Kompetenzen

Inhalt

Das Projekt soll aktuelle Themen aus der Forschung oder den Kooperationen des Instituts für Materialwissenschaft in Form von Fallstudien bearbeiten. Dabei sollen auch die Verknüpfungen der Themenbereich Ingenieurwesen und Wirtschaft im Focus stehen. Der Schwerpunkt der Arbeit kann dabei sowohl experimentell in Form von Konzeption und Aufbau eines Versuchsstands, Durchführung der Experimente und deren Auswertung und Bewertung, als auch theoretisch in Form von Literaturrecherche und vergleichenden Bewertungen bekannter Lösungsansätze für eine neue Aufgabenstellung liegen.

Medienformen

- entfällt

Literatur

- entfällt
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Praxisphase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>mawi-605</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>fachspezifische Vertiefung</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PP</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>Mind. 8 Wochen</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Dr. O. Riemenschneider</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Professoren der Materialwissenschaft</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 6. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>1-Fachstudiengang B.Sc. Wirtschaftsingenieur Materialwissenschaft</td>
</tr>
<tr>
<td>Bewertung</td>
<td>unbenotet</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>entfällt</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Mindestens 8 Wochen Anwesenheitspflicht im Betrieb (Vergleichswert bei Schichtarbeit: ca. 310 Arbeitsstunden)</td>
</tr>
<tr>
<td></td>
<td>450 h Gesamtaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>Mindestens 90 ECTS</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Studierende sollten bis zum Antritt der Praxisphase einen Einblick in die Materialwissenschaft bekommen haben. Es sollten somit mindestens alle Module der Materialwissenschaft erfolgreich absolviert worden sein.</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>schriftlicher Bericht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflicht/Wahlpflicht</th>
<th>benotet/unbenotet</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>unbenotet</td>
<td>100%</td>
</tr>
</tbody>
</table>

62
<table>
<thead>
<tr>
<th>Lernziele/Kompetenzen</th>
<th>Die Studierenden haben durch konkrete Aufgabenstellungen und praktische Mitarbeit in Betrieben oder anderen Einrichtungen die berufliche Tätigkeit eines Wirtschaftsingenieurs persönliche Erfahrungen. Sie sind in der Lage, die im bisherigen Studium erworbenen Kenntnisse und Fähigkeiten auf diese Aufgabenstellung anzuwenden und die bei der praktischen Tätigkeit gemachten Erfahrungen kritisch zu reflektieren und auszuwerten. Sie haben durch die Praxisphase gezeigt, dass sie zur praktischen Arbeit im Bereich eines Wirtschaftsingenieurs Materialwissenschaft befähigt sind.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalt</td>
<td>entfällt</td>
</tr>
<tr>
<td>Medienformen</td>
<td>entfällt</td>
</tr>
<tr>
<td>Literatur</td>
<td>entfällt</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Bachelorarbeit</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>mawi-606</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>fachspezifische Vertiefung</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BA</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>9 Wochen</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Pflichtmodul im 6. Semester</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Technische Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Materialwissenschaft</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Dr. O. Riemenschneider</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Professoren der Materialwissenschaft</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul im 6. Semester</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>entfällt</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>9 Wochen</td>
</tr>
<tr>
<td>Gesamtaufwand</td>
<td>360 h</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>12 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>Mindestens 138 ECTS</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Vortrag im Arbeitskreis</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>Schriftliche Ausarbeitung der Arbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflicht/Wahlpflicht</th>
<th>benotet/unbenotet</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>benotet</td>
<td>100%</td>
</tr>
<tr>
<td>Lernziele/Kompetenzen</td>
<td>Die Studierenden können ihr gesammeltes Wissen und ihre Erfahrungen aus dem Studium gezielt auf eine Fragestellung anwenden. Sie sind in der Lage, diese Fragestellung zu verstehen, zu analysieren, eine Lösungsansatz zu erarbeiten und diesen mit theoretischen und oder praktischen Ergebnissen zu verifizieren. Sie können in einer schriftlichen Auswertung ihre These kritisch hinterfragen ggf. untermauern und weiterentwickeln oder auch korrigieren. Sie haben durch die Arbeit gezeigt, dass sie zur wissenschaftlichen Arbeit im Bereich eines Wirtschaftsingenieurs Materialwissenschaft befähigt sind.</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Inhalt</td>
<td>Die Bachelorarbeit ist in der Regel eine eigenständige Untersuchung mit einer planerischen, experimentellen, konstruktiven oder einer anderen Aufgabenstellung mit einer ausführlichen Beschreibung und Erläuterung ihrer Lösung. Themen für diese Arbeit können aus dem Bereich der Materialwissenschaften oder aber auch als interdisziplinäre Arbeit aus dem Grenzbereich zwischen Materialwissenschaft und anderen Wissenschaften kommen.</td>
<td></td>
</tr>
<tr>
<td>Medienformen</td>
<td>entfällt</td>
<td></td>
</tr>
<tr>
<td>Literatur</td>
<td>entfällt</td>
<td></td>
</tr>
</tbody>
</table>
Wahlpflichtmodule der Betriebswirtschaftslehre
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Marketing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td></td>
</tr>
<tr>
<td>Modulniveau</td>
<td>wirtschaftswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWL-Mark</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. S. Hoffmann</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. S. Hoffmann und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodule im 5. Semester</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahlpflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Marketing</td>
<td>Pflicht</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Übungen</td>
<td>Marketing</td>
<td>Pflicht</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th>30 h Vorlesung 15 h Übungen 105 h Eigenstudium 150 h Gesamtaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreditpunkte</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen laut Prüfungsordnung</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Lösen von Übungsaufgaben Vorstellen der Lösungen</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>Schriftliche Prüfung</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
</tr>
<tr>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundlagen der Marketingstrategie und der Marktsegmentierung</td>
</tr>
<tr>
<td>• klassische Marketing-Mix, d.h. Produkt-, Preis-, Kommunikations- und Distributionspolitik</td>
</tr>
<tr>
<td>• Besonderheiten des Marketings in Dienstleistungssektor und anderen ausgewählten Bereichen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
<th>Beamer, Tafel</th>
</tr>
</thead>
</table>

<p>| Literatur | Wird zu Beginn der Veranstaltung bekannt gegeben. |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Produktion und Logistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>BWL-ProdLog</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>wirtschaftswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. F. Meisel</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. F. Meisel und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodul im 5. Semester</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Art</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Produktion und Logistik</td>
</tr>
<tr>
<td>Übungen</td>
<td>Produktion und Logistik</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand | 20 h Vorlesung
110 h Eigenstudium | 150 h Gesamtaufwand |
| Kreditpunkte | 5 ECTS |
| Voraussetzungen laut Prüfungsordnung | keine |
| Empfohlene Voraussetzungen | keine |
| Studienbegleitende Leistungen | Lösungen von Übungsaufgaben
Vorstellen der Lösungen |
<table>
<thead>
<tr>
<th>Prüfungsleistungen</th>
<th>Schriftliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
</tr>
<tr>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

| Inhalt | • Produktions- und Logistiksysteme
| | • Planungsaufgaben des Produktionsmanagements
| | • Planungsaufgaben des Logistikmanagements
| | • Planungsverfahren für das Produktions- und Logistikmanagement
| | • Theoretische Grundlagen des Produktions- und Logistikmanagements |

| Medienformen | Beamer, Tafel |

<p>| | • Thonemann „Operations Management“, Addison-Wesley Verlag, 2. Auflage, 2010 |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Grundlagen des Technologiemanagements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>BWL-GrdTM</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>wirtschaftswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWL-GrdTM</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. C. Schultz</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. C. Schultz und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodul im 5. Semester</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Art</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Grundlagen des Technologiemanagements</td>
</tr>
<tr>
<td>Übungen</td>
<td>Grundlagen des Technologiemanagements</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>20 h Vorlesung 10 h Übungen 120 h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Modulhandbuch</td>
<td>Wahlpflichtmodule</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Lösung von Übungsaufgaben</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>Schriftliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Pflicht/Wahlpflicht</td>
</tr>
<tr>
<td></td>
<td>Pflicht</td>
</tr>
<tr>
<td>Lernziele / Kompetenzen</td>
<td>Die Studierenden verstehen die Relevanz von Managementfragestellungen für die Bewältigung und Nutzung technologischer Entwicklungen und sind in der Lage geeignete Instrumente des Technologiemanagements auswählen und anwenden zu können.</td>
</tr>
<tr>
<td>Inhalt</td>
<td>• Technologie und Gesellschaft</td>
</tr>
<tr>
<td></td>
<td>• Technologienutzen</td>
</tr>
<tr>
<td></td>
<td>• Technologie-Typologien</td>
</tr>
<tr>
<td></td>
<td>• Industriedynamik</td>
</tr>
<tr>
<td></td>
<td>• Technologiefrühaufklärung</td>
</tr>
<tr>
<td></td>
<td>• Technologiestrategien</td>
</tr>
<tr>
<td></td>
<td>• Umsetzung der Technologiestrategie</td>
</tr>
<tr>
<td></td>
<td>• Technologiebeschaffung und -verwertung</td>
</tr>
<tr>
<td></td>
<td>• Patentmanagement</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Beamer, Tafel</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Management</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>BWL-Man</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>wirtschaftswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWL-Man</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. C. Schultz</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. C. Schultz und Mitarbeiter, Prof. Dr. Dr. h.c. J. Wolf und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodul im 5. Semester</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Art</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Management</td>
</tr>
<tr>
<td>Übungen</td>
<td>Management</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>20 h Vorlesung, 10 h Übungen, 120 h Eigenstudium, 150 h Gesamtaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Lösen von Übungsaufgaben, Vorstellen der Lösungen</td>
</tr>
</tbody>
</table>

73
<table>
<thead>
<tr>
<th>Prüfungsleistungen</th>
<th>Schriftliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
</tr>
<tr>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele / Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden wissen um die in Unternehmen und Verwaltungen anfallende Führungsaufgaben und strategische Entscheidungen kennen Methoden um diese zielgerichtet vorzunehmen und zu bewerten. Sie sind mit wesentlichen Problemfeldern und Instrumenten der strategischen Unternehmensführung vertraut. Sie haben Kompetenzen erworben, die für das zielgerichtete Treffen von Strategie- und Organisationsentscheidungen erforderlich sind. Die Studierenden kennen Methoden für die die zielgerichtete Beeinflussung von Mitarbeitern.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gegenstandsbereich des Managements</td>
</tr>
<tr>
<td>• Strategieformulierung</td>
</tr>
<tr>
<td>• Organisationsgestaltung</td>
</tr>
<tr>
<td>• Personalmanagement</td>
</tr>
<tr>
<td>• Unternehmenskultur und ihre Beeinflussung</td>
</tr>
<tr>
<td>• Unternehmensverfassung und Corporate Governance</td>
</tr>
<tr>
<td>• Ausgewählte Managementtheorien</td>
</tr>
<tr>
<td>• Methodische Zugänge zur Untersuchung von Managementfragen (quantitativ-großzahlige vs. qualitativ-kleinzahlige Untersuchungen)</td>
</tr>
</tbody>
</table>

| Medienformen | Beamer, Tafel |

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Modulnummer</td>
</tr>
<tr>
<td>Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>Dauer</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
</tr>
<tr>
<td>Dozent(in)</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Bewertung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahl-pflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
<td>Grundlagen des Entrepreneurship</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Übungen</td>
<td>Grundlagen des Entrepreneurship</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th>20 h Vorlesung</th>
<th>10 h Übungen</th>
<th>120 h Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150 h Gesamtaufwand</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
</tbody>
</table>
| Studienbegleitende Leistungen | Lösungen von Übungsaufgaben
Vorstellen der Lösungen |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistungen</td>
<td>Schriftliche Prüfung</td>
</tr>
<tr>
<td>Pflicht/Wahlpflicht</td>
<td>benotet/unbenotet</td>
</tr>
<tr>
<td>Pflicht</td>
<td>benotet</td>
</tr>
<tr>
<td>Lernziele / Kompetenzen</td>
<td>Die Studierenden haben ein grundlegendes Verständnis für unternehmerisches Denken und Handeln. Sie kenne die Grundlagen um die Umsetzung eigener Geschäftsideen zu fördern.</td>
</tr>
</tbody>
</table>
| Inhalt | • Einführung in das Entrepreneurship
• Identifikation und Bewertung unternehmerischer Chancen
• Business Planning
• Marktanalyse
• Marketing
• Finanzplanung
• Rechtliche Aspekte
• Wachstumsstrategien und Exit |
<p>| Medienformen | Beamer, Tafel |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>BWL-OR</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>wirtschaftswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWL-OR</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. F. Meisel</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. F. Meisel und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodul im 5. Semester</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Art</th>
<th>Titel</th>
<th>Pflicht/Wahlpflicht</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>Operations Research</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Übungen</td>
<td></td>
<td>Operations Research</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
<th>20 h Vorlesung</th>
<th>20 h Übungen</th>
<th>110 h Eigenstudium</th>
<th>150 h Gesamtaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreditpunkte</td>
<td>5 ECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Das Modul „Produktion und Logistik“ sollte erfolgreich abgeschlossen sein.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Lösen von Übungsaufgaben Vorstellen der Lösungen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

77
Prüfungsleistungen	Schriftliche Prüfung
Pflicht/Wahlpflicht	benotet/unbenotet
Pflicht	benotet

Lernziele / Kompetenzen

Inhalt
- Modellierung unternehmerischer Planungsprobleme und Lösung durch geeignete Optimierungsverfahren
- Grundlagen der Netzwerktheorie, heuristischer Verfahren und von Simulationssystemen
- Anwendungen im Bereich Produktion, Logistik, SCM, Projektmanagement, Personalplanung u.a.m.

Medienformen
Beamer, Tafel

Literatur
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Leadership in Organizations (Personalführung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>BWL-PersFhr</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>wirtschaftswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWL-PersFhr</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. C. Buengeler</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. C. Buengeler und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodul im 5. Semester</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Art</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Leadership in Organizations</td>
</tr>
<tr>
<td>Übungen</td>
<td>Leadership in Organizations</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>30 h Vorlesung</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Studienbegleitende Leistungen</td>
<td>Lösen von Übungsaufgaben</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>Schriftliche Prüfung</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Pflicht/Wahlpflicht, benotet/unbenotet, Gewichtung</td>
<td></td>
</tr>
<tr>
<td>Pflicht, benotet, 100%</td>
<td></td>
</tr>
</tbody>
</table>

Lernziele / Kompetenzen	After this course, students should be able to	
	...describe different approaches to leadership and how	
	they work, ...analyze and contrast different perspectives	
	on leadership and evaluate their advantages and	
	disadvantages, ...describe factors of successful	
	leadership, ...reproduce arguments and findings	
	regarding current leadership challenges and	
	developments, ...apply their knowledge to leadership	
	situations in practice, ...understand their own	
	predispositions regarding leadership.	

Inhalt	Early and contemporary trait approach	
	Skills approach	
	Style Approach	
	Situational approach	
	Contingency theory	
	Path-goal theory	
	Leader-Member Exchange	
	Charismatic-transformational leadership & Full Range of	
	Leadership theory	
	Passive & destructive leadership	
	Ethical, servant, and authentic leadership	
	Women and leadership	
	Culture and leadership	

| Medienformen | Beamer, Tafel | |

<p>| Literatur | Primary: | |
| | Secondary: | |
| | Antonakis & Day (2017). The Nature of Leadership (3rd | |
| | ed.). Sage. | |
| | Selected articles: | |
| | * Selected key articles will be introduced in class; the | |
| | assignment will require students to search and use | |
| | additional articles. | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Innovationsmanagement: Prozesse und Methoden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
<td>BWL-InnoMProz</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>wirtschaftswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BWL-InnoMProz</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Wiederholung im Studienjahr</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche Fakultät</td>
<td>Wirtschafts- und Sozialwissenschaftliche Fakultät</td>
</tr>
<tr>
<td>Modulverantwortliches Institut</td>
<td>Institut für Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Modulverantwortliche(r) Dozent(in)</td>
<td>Prof. Dr. A. Walter</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. A. Walter und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodul im 5. Semester</td>
</tr>
<tr>
<td>Bewertung</td>
<td>benotet</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Art</td>
</tr>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übungen</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>20 h Vorlesung</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Voraussetzungen laut Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
</tbody>
</table>
| Studienbegleitende Leistungen | Lösen von Übungsaufgaben
| Vorstellen der Lösungen |
| Prüfungsleistungen | Schriftliche Prüfung |
| Pflicht/Wahlpflicht | benotet/unbenotet |
| Gewichtung | 100% |

| • Definition, Typisierung und Relevanz von Innovationen |
| • Innovationsimpulse und Definition des Innovationsproblems |
| • Generierung alternativer Handlungsmöglichkeiten |
| • Bildung klarer Innovationsziele |
| • Organisation und Steuerung des Innovationsprozesses |

| Medienformen | Beamer, Tafel |
| Aktuelle Forschungsliteratur zum Innovationsmanagement (wird in der Vorlesung bekanntgegeben) |