Functional Nanomaterials Chair

Current research of our group

 

This is a concise selection of our current work. For a detailed overview of our scientific work, you can refer to our publications. You can find our latest publications here

 

 

2020

 

Innovative battery research SH: Start of a new project “BAEW – Labor für zuverlässige, batteriegestützte Energiewandlung”

 

Innovative battery technology paired with the right power electronics has the potential to fundamentally improve our energy generation and mobility. As batteries are more and more in focus, new materials solution for high energy and high power batteries are necessary. Silicon as one of the earth abundant materials is the material of choice having the potential to drastically increase the capacity and thus energy density of batteries.
Therefore, this project aims to bring together specialists in the field of battery development from materials science and power electronics in a real laboratory with a new research infrastructure. In this innovation laboratory, in close mutual cooperation, new battery technology can be tested in application-related power electronics issues related to memory integration in smart grids and electromobility. In addition, the use of "Wide Band Gap" (WBP) power semiconductors (silicon carbide in the stationary area and gallium nitride in mobile applications) forms the heart of the project. In particular, the new infrastructure will offer regional prospects for high-quality research, cooperation and training in the future. Locally rooted and well-trained specialists in turn benefit the economy in Schleswig-Holstein and promote the transfer of knowledge between universities and industry.
In the course of the energy transition, the areas of electricity, heat and mobility are growing together. A reliable energy supply requires both intelligent power grids and innovative storage technologies. To achieve this, the areas of materials science and power electronics will work closely together in a new laboratory at the Kiel University (CAU). Schleswig-Holstein invests almost two million euros in the equipment to develop and test new battery systems for intelligent networks and electromobility. The interdisciplinary laboratory at the Faculty of Engineering is also open for scientific and industrial cooperation. Additionally, this laboratory should be integrated in the daily education of young researchers in Schleswig-Holstein. On Thursday, July 2, 2020, 9:45 a.m., Prime Minister Daniel Günther hands over the funding decision of 1,974,034 euros funded by the “Europäischer Fonds für regionale Entwicklung (EFRE)”.

 

Press release CAU:

 

2016

 

Making metal surfaces strong, resistant, and multifunctional by nanoscale-sculpturing
 

Surfaces are the crucial and limiting factor in nearly all metal applications, especially when technologically relevant alloys are employed. Insufficient surface properties on the nano- and microscale of metals determine, e.g. metal–polymer composite stability, implant biocompatibility, or corrosion resistance. Conventional surface preparation is just like an arbitrary cut through the metal body optimized for bulk behavior so that such surfaces contain various element mixtures and complex microstructures in which grains and lattice planes vary in their chemical stability from weak to strong. In contrast, the here described novel nanoscale-surface sculpturing based on semiconductor etching knowledge turns surfaces of everyday metals into their most stable configuration, but leaves the bulk properties unaffected. Thus, nanoscale-sculpturing ensures stronger, reliable joints to nearly all materials, reduces corrosion vastly, and generates a multitude of multifunctional surface properties not limited to those shown below.

Zwei Studenten und eine Tasse Kaffee
 

Link paper: http://pubs.rsc.org/en/content/articlepdf/2016/nh/c6nh00140h
 

Press release CAU: http://www.uni-kiel.de/pressemeldungen/?pmid=2016-285-nanosculpturing&lang=en


 


Zinc oxide cures genital herpes in animals

  

A new effective vaccine for the protection from genital herpes has been developed from a microbicide and four-legged zinc oxide microstructures calles tetrapods. The viral particles are bound to the zinc oxide particles where the antigen presenting cells can further process them. This has been a cooperative work with the University of Illinois at Chicago

Link to the paper Link to press release

 

 Antigen presenting cells (APC)  process viral particles, which are bound on zinc oxide tetrapods (ZOTEN) Credit: Deepak Shukla

Antigen presenting cells (APC)  process viral particles, which are bound on zinc oxide tetrapods (ZOTEN) Credit: Deepak Shukla

2015

Functional Ecofriendly Coatings for Marine Applications
 

Biofouling auf verschiedenen Oberflächen in Gammel Âlbo, Dänemark

Biofouling on a varying surfaces at Gammel Âlbo, Denmark

Since the prohibition of tributyltin (TBT)-based antifouling paints in 2008, the development of environmentally compatible and commercially realizable alternatives is a crucial issue. Cost effective fabrication of antifouling paints with desired physical and biocompatible features is simultaneously required and recent developments in the direction of inorganic nanomaterials could play a major role. In the present work, a solvent free polymer/particle-composite coating based on two component polythiourethane (PTU) and tetrapodal shaped ZnO (t-ZnO) nano- and microstructures has been synthesized and studied with respect to mechanical, chemical and biocompatibility properties. Furthermore, antifouling tests have been carried out in artificial seawater tanks. Four different PTU/t-ZnO composites with various t-ZnO filling fractions (0 wt%, 1 wt%, 5 wt%, 10 wt%) were prepared and the corresponding tensile, hardness, and pull-off test results revealed that the composite filled with 5 wt% t-ZnO exhibits the strongest technical properties. Surface free energy (SFE) studies using contact angle measurements showed that the SFE value decreases with an increase in t-ZnO filler amounts. The influence of t-ZnO on the polymerization reaction was confirmed by Fourier transform infrared-spectroscopy measurements and thermogravimetric analysis. The immersion tests demonstrated that fouling behavior of the PTU/t-ZnO composite with a 1 wt% t-ZnO filler has been decreased in comparison to pure PTU. The composite with a 5 wt% t-ZnO filler showed almost no biofouling.

 

Antifoulung

For marine applications, the antifouling coatings have to fulfill various demands, like mechanical and UV-stability, being non-toxic and long lasting, etc. The presented investigations demonstrate the suitability of tetrapodal ZnO-polymer composite coatings for antifouling applications.



 

2014



Zwei Studenten und eine Tasse Kaffee
 Mechanical interlocking as adhesion process on special, etched aluminium substrates 
a)-d) The increase of the surface roughness leads to locking of the glue or adhesive e) An adhesionsystem between
silicones which enables painting on silicone surfaces f) Special, etched aluminium surfaces g) 3D-printed polymerlocks
on etched surfaces exhibit an extremely strong adhesion.