3.2 Quantitative approach for changes of p

Using Eq. (3.9) and taking into account that in the left hand side of Eq. (3.8) $\Delta_{r} G^{0}$ is independent of p (since G^{0} is the standard potential at 1 bar), i.e. K_{p} is independent of pressure, we find

$$
\begin{equation*}
\left(\frac{\partial \ln \left(K_{p}\right)}{\partial p}\right)_{T}=0=\left(\frac{\partial \ln \left(K_{x}\right)}{\partial p}\right)_{T}+\frac{\partial}{\partial p}\left(\sum_{i} \ln \left(\frac{p_{t o t}}{p^{0}}\right)^{\nu_{i}}\right) \Rightarrow\left(\frac{\partial \ln \left(K_{x}\right)}{\partial p}\right)_{T}=-\frac{\sum_{i} \nu_{i}}{p_{t o t}} \tag{3.10}
\end{equation*}
$$

So if $\sum_{i} \nu_{i}=0$ holds K_{x} is independent of p, but if e.g. $\sum_{i} \nu_{i}>0$ and $\Delta p>0$ than K_{x} becomes smaller, i.e. we have less reaction products.

