## Solution to Exercise 8.1-1

## Exponential Growth

1. The output of the solar cell industry in 2006-2008 grew by $\mathbf{4 0} \%$ per year. Let's assume that all solar cells installed in 2007 produced a total energy of $0.1 \mathrm{GW} /$ year. Calculate (and plot) the installed power as a function of time up to 2050 for growth rates of $\alpha^{\prime}=\mathbf{2 0} \%, \mathbf{3 0} \%, \mathbf{4 0} \%$, and $\mathbf{5 0} \%$. What is the proper equation?
The general equation is $P(t)=P_{0} \cdot \exp (\alpha \cdot t)$ and we know $P(t=0 \quad a)=100 \mathrm{MW}$ and $P(t=1 a)=100 \mathrm{MW}+\left(\alpha^{\prime} /\right.$ 100) $\cdot \mathbf{1 0 0} \mathbf{M W} ; \alpha^{\prime}$ is the given growth rate in \%

It follows that

$$
\begin{aligned}
P(t=1 \mathrm{a}) & =100 \mathrm{MW} \cdot \exp \left(\alpha \cdot 1 \mathrm{a} \cdot \mathrm{a}^{-1}\right) \\
& =100 \mathrm{MW}+\left(\alpha^{\prime} / 100\right) \cdot 100 \mathrm{MW} \\
\alpha & =\ln \left(1+\alpha^{\prime} / 100\right) \mathrm{a}^{-1} \\
= & (0.182 ; 0.262 ; 0.336 ; 0.405) \mathrm{a}^{-1} \\
& \left.\begin{array}{l}
\text { for growth rates of } \\
\\
\\
\end{array}\right)=30 \% ; 30 \% ; 40 \% ; 50 \%
\end{aligned}
$$

2. Calculate (and plot) the installed power as a function of time up to 2050 for growth rates of $\mathbf{2 0} \%$, $\mathbf{3 0} \%$, $\mathbf{4 0} \%$, and 50 \%.
That's easy and we do it, of course, in a $\log P(t)$ plot. What we get looks like this:

3. What follows form the results with respect to the world-wide power scenario as described in the link??

It follows that with the present growth rate of $40 \%$ all of the world's energy demands can be produced by solar cells in 35-38 years - be it the present 13 TW or the predicted 33 TW
That looks like a "Milchmädchenrechnung" (i.e. very naive), because that's what it is. If we can sustain a growth rate of $40 \%$ for $\mathbf{3 0 - 4 0}$ years remains to be seen. It's unlikely, but not impossible. The semiconductor industry, for example, sustained a growth rate of about $30 \%$ by now for more than $\mathbf{3 5}$ years, and no end is in sight.
4. Plot the demand for $\mathbf{S i}$, assuming that a standard ( $\mathbf{1 0 0 0} \times \mathbf{1 0 0 0} \times \mathbf{0 . 1}) \mathbf{m m}^{\mathbf{3}} \mathbf{S i}$ solar cell generates $\mathbf{1 0} \mathbf{W}$ on average. Will there be enough $\mathbf{S i}$ ? How do the amounts of $\mathbf{S i}$ needed compare to other essential raw materials?
The volume is $10^{5} \mathbf{~ m m}^{\mathbf{3}}=\mathbf{1 0 0} \mathbf{~ c m}^{2}$. With a density of $\mathbf{2 . 3 3} \mathbf{~ g} / \mathbf{c m}^{\mathbf{3}}$ we have $\mathbf{2 3 . 2} \mathbf{~ g} / \mathbf{W}$.
The present (2007) production of (solar grade) Si per year is roughly $\mathbf{2 0 . 0 0 0} \mathbf{t o}=\mathbf{2} \cdot \mathbf{1 0}^{\mathbf{1 0}} \mathbf{g}$; corresponding to $\mathbf{8 6 2}$ MW. If we want to produce 1 TW , we would need $23.2 \cdot \mathbf{1 0}^{\mathbf{1 3}} \mathrm{g}=\mathbf{2 3 . 2} \cdot \mathbf{1 0 ^ { 7 }}$ to of $\mathbf{S i}$.
That looks like a lot of $\mathbf{S i}$. Yes, but look at the present world production of:

- Iron / Steel: $\approx 780 \cdot 10^{6}$ to.
- Coal: $\approx 5000 \cdot 10^{6}$ to.
- $A I \approx 22 \cdot 10^{6}$ to.

So a few million tons of $\mathbf{S i}$ is definitely within present day capabilities

