## Simple Proofs of Bloch's Theorem

## The Proof

We first give a very short proof for a special case which is taken from the book of Kittel ("Quantum Theory of Solids"). It treats the one-dimensional case and is only valid if $\psi$ is not degenerate, i.e. there exists no other wavefunction with the same $\boldsymbol{k}$ and energy $\boldsymbol{E}$.

We consider a one-dimensional ring of lattice points with the geometry as shown in the picture.

This is of course just a representation of a one-dimensional crystal consisting of $\boldsymbol{N}$ atoms with spacing $\boldsymbol{a}$ and periodic boundary conditions.

The potential $\boldsymbol{V}$ thus is periodic in $\boldsymbol{x}$ with period length $\boldsymbol{a}$, i.e. we have $\boldsymbol{V}(\boldsymbol{x})=$ $V(x+s \cdot a)$ with $s=$ integer.


The decisive thought invokes symmetry arguments. Since no particular coordinate $\boldsymbol{x}$ along the ring is different in any way from the coordinate $(\boldsymbol{x}+\boldsymbol{a})$, we expect that the value of any wave function $\psi(\boldsymbol{x})$ will differ at most by some factor $\boldsymbol{C}$ from the value at $(\boldsymbol{x}+\boldsymbol{a})$, i.e.

$$
\psi(x+a)=C \cdot \psi(x)
$$

If we now proceed from $(x+a)$ to $(x+2 a)$, or to $x+N a$, we obtain

$$
\begin{aligned}
& \psi(x+2 a)=C^{2} \cdot \psi(x) \\
& \psi(x+N a)=C^{N} \cdot \psi(x)=\psi(x)
\end{aligned}
$$

because after $\boldsymbol{N}$ steps we are back at the beginning.
We thus have $\boldsymbol{C}^{\boldsymbol{N}}=\mathbf{1}$ and $\boldsymbol{C}$ must be one of the $\boldsymbol{N}$ roots of $\mathbf{1}$, i.e.

$$
C=\exp ^{i \cdot 2 \pi s} \frac{N}{}
$$

With $s=0,1,2,3, \ldots, N-1$
We now have $\psi(\boldsymbol{x}+\boldsymbol{a})=\psi(\boldsymbol{x}) \cdot \boldsymbol{\operatorname { e x p }}(\mathrm{i} 2 \pi \boldsymbol{s} / \boldsymbol{M})$ and this equation is satisfied if

$$
\psi(x)=u_{k}(x) \cdot \exp \frac{i \cdot 2 \pi \cdot s \cdot x}{N \cdot a}
$$

With $\mathbf{u}_{\mathbf{k}}(\boldsymbol{x})=\mathbf{u}_{\mathbf{k}}(\boldsymbol{x}+\boldsymbol{a})$, i.e. for any function $\mathbf{u}$ that has the periodicity of the lattice.

- Try it:

$$
\begin{aligned}
& \psi(x+a)=u_{k}(x+a) \cdot \exp \frac{i \cdot 2 \pi \cdot s \cdot(x+a)}{N \cdot a} \\
& \psi(x+a)=u_{k}(x) \cdot \exp \frac{i \cdot 2 \pi \cdot s \cdot x}{N \cdot a} \cdot \exp \frac{i \cdot 2 \pi \cdot s}{N}=\psi(x) \cdot \exp \frac{i 2 \pi \cdot s}{N}
\end{aligned}
$$

If we introduce $\boldsymbol{k}=\mathbf{2 \pi \boldsymbol { s }}$ / Na we have Bloch's theorem for the one-dimensional case.
q.e.d.

## The Problem

This "proof", however, is not quite satisfactory. It is not perfectly clear if solutions could exist that do not obey Bloch's theorem, and the meaning of the index $\mathbf{k}$ is left open. In fact, we could have dropped the index without losing anything at this stage.
It does, however, give an idea about the power of the symmetry considerations.
A very similar proof is contained in the relevant Alonso-Finn book ("Quantum and Statistical Physics"). It uses a slightly different approach in arguing about symmetries.
Again, we consider the one-dimensional case, i.e. $\boldsymbol{V}(\boldsymbol{x})=\boldsymbol{V}(\boldsymbol{x}+\boldsymbol{a})$ with $a=$ lattice constant.
But now we argue that the probability of finding an electron at $\boldsymbol{x}$, i.e. $|\Psi(\boldsymbol{x})|^{2}$, must be the same at any indistinguishable position, i.e.

$$
|\psi(x)|^{2}=|\psi(x+a)|^{2}
$$

This implies

$$
\begin{aligned}
\psi(x+a) & =c \cdot \psi(x) \\
|C|^{2} & =1
\end{aligned}
$$

We thus can express $\boldsymbol{C}$ as

$$
C=\exp (i \cdot k \cdot a)
$$for all $\boldsymbol{a}$ and $\boldsymbol{k}$. At this point $\boldsymbol{k}$ is an arbitrary parameter (with dimension $\mathbf{1 / m}$ ). This ensures that $|C|^{\mathbf{2}}=\mathbf{e x p}(\mathbf{i} \boldsymbol{k} \boldsymbol{a})$. $\exp (-i k a)=1$

We thus have

$$
\psi(x+a)=\exp (i k a) \cdot \psi(x)
$$

And this is already a very general form of Blochs theorem as shown below.
Writing it straight forward for the three-dimensional case we obtain the general version of Bloch's theorem:

$$
\psi_{\mathrm{k}}(\underline{r}+\underline{T})=\exp (\mathbf{i} \underline{k} \cdot \underline{T}) \cdot \psi_{\mathrm{k}}(\underline{r})
$$

with $\underline{\boldsymbol{T}}=$ translation vector of the lattice and $\underline{\boldsymbol{r}}=$ arbitrary vector in space.
The index $\mathbf{k}$ now symbolizes that we are discussing that particular solution of the Schrödinger equation that goes with the wave vector $\underline{\boldsymbol{k}}$.

The generalization to three dimensions is not really justified, but a rigorous mathematical treatment yields the same result. The more common form of the Bloch theorem with the modulation function $\mathbf{u}(\boldsymbol{k})$ can be obtained from the (onedimensional) form of the Bloch theorem given above as follows:
Multiplying $\psi(x)=\exp (-i k a) \cdot \psi(x+a)$ with $\exp (-i k x)$ yields

$$
\exp (-i k x) \cdot \psi(x)=\exp (-\mathrm{i} k x) \cdot \exp (-\mathrm{i} k a) \cdot \psi(x+a)=\exp (-\mathrm{i} k \cdot[x+a]) \cdot \psi(x+a)
$$

This shows unambiguously that $\exp (-\mathbf{i} \boldsymbol{k} \boldsymbol{x}) \cdot \Psi(\boldsymbol{x})=\mathbf{u}(\boldsymbol{x})$ is periodic with the periodicity of the lattice.
And this, again, gives Bloch's theorem:

$$
\psi(x)=u(x) \cdot \exp (i k x)
$$

Once more, no index $\mathbf{k}$ at $\psi$ or $\mathbf{u}$ is required. We also did not require specific boundary conditions. The meaning of $\boldsymbol{k}$, however, is left unspecified. Of course, the plane wave part of the expression makes it clear that $\boldsymbol{k}$ has the role of a wave vector, but it has not been explicitly introduced as such.

