Solution to Exercise 2.1-2

Derive numbers for $\mathrm{v}_{0}, \mathrm{~V}_{\mathrm{D}}, \mathrm{T}$, and $/$

First Task: Derive a number for $\mathbf{v}_{\mathbf{0}}$ (at room temperature). We have:

$$
\mathrm{v}_{0}=\binom{3 \underline{k} T}{\underline{m}}^{1 / 2}=\left(\begin{array}{cc}
3 \cdot 8.6 \cdot 10^{-5} \cdot 300 & \mathrm{eV} \cdot \mathrm{~K} \\
9.1 \cdot 10^{-31} & \mathrm{~K} \cdot \mathrm{~kg}
\end{array}\right)^{1 / 2}=2.92 \cdot 10^{14} \cdot\binom{\mathrm{eV}}{-}^{1 / 2}
$$

The dimension "square root of $\mathbf{e V} / \mathbf{k g}$ " does not look so good - for a velocity we would like to have \mathbf{m} / \mathbf{s}. In looking at the energies we equated kinetic energy with the classical dimension $\mathbf{k g} \cdot \mathbf{m}^{2} / \mathbf{s}^{\mathbf{2}}=\mathbf{J}$ with thermal energy $\mathbf{k T}$ expressed in $\mathbf{e V}$. So let's convert $\mathbf{e V}$ to \mathbf{J} (use the link) and see if that solves the problem. We have $\mathbf{1 e V}=\mathbf{1 . 6}$. $\mathbf{1 0}^{-19} \mathrm{~J}=1.6 \cdot \mathbf{1 0}^{\mathbf{- 1 9}} \mathbf{~ k g} \cdot \mathbf{m}^{\mathbf{2}} \cdot \mathrm{s}^{\mathbf{- 2}}$, which gives us

$$
\mathrm{v}_{0}=2.92 \cdot 10^{14} \cdot\left(\frac{1.6 \cdot 10^{-19} \mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}\right)^{1 / 2}=1.17 \cdot 10^{5} \mathrm{~m} / \mathrm{s}=4.21 \cdot 10^{5} \mathrm{~km} / \mathrm{h}
$$

Possibly a bit surprising - those electrons are no sluggards but move around rather fast. Anyway, we have shown that a value of $\approx 10^{\mathbf{4}} \mathbf{~ m} / \mathrm{s}$ as postulated in the backbone is really OK.
Of course, for $\boldsymbol{T} \rightarrow \mathbf{0}$, we would have $\mathbf{v}_{\mathbf{0}} \rightarrow \mathbf{0}$ - which should worry us a bit???? If instead of room temperature ($\boldsymbol{T}=$ 300 K) we would go to 1200 K , let's say, we would just double the average speed of the electrons.

Second Task: Derive a number for \mathbf{T}. We have:

First we need some number for the concentration of free electrons per $\mathbf{m}^{\mathbf{3}}$. For that we complete the table given, noting that for the number of atoms per $\mathbf{m}^{\mathbf{3}}$ (i.e, the atomic density) we have to divide the density by the atomic weight.

Atom	Density $\left[\mathbf{k g} \cdot \mathbf{m}^{\mathbf{- 3}}\right]$	Atomic weight $\left[\mathbf{1 . 6 6} \cdot \mathbf{1 0}^{\mathbf{- 2 7}} \mathbf{k g}\right]$	Conductivity σ $\left[10^{7} \Omega^{\mathbf{1}} \cdot \mathbf{m}^{-1}\right]$	Atomic dens. $\left[\mathbf{1 0}^{\mathbf{2 8}} \mathbf{m}^{\mathbf{- 3}}\right]$
$\mathbf{N a}$	970	23	2.4	2.54
$\mathbf{C u}$	8,920	64	5.9	8.40
$\mathbf{A u}$	19,300	197	4.5	5.90

 estimate some average value $\sigma=5 \cdot 10^{7} \Omega^{-1} \mathrm{~m}^{-1}$. We obtain

$$
T=\frac{5 \cdot 10^{7} \cdot 9.1 \cdot 10^{-31}}{5 \cdot 10^{28} \cdot\left(1.6 \cdot 10^{-19}\right)^{2}} \frac{\mathrm{~kg} \cdot \mathrm{~m}^{3}}{\Omega \cdot \mathrm{~m} \cdot \mathrm{~A}^{2} \cdot \mathrm{~s}^{2}}=3.55 \cdot 10^{-14} \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~V} \cdot \mathrm{~A} \cdot \mathrm{~s}^{2}}
$$

Well, somehow the whole thing would look much better with the unit \mathbf{s}. So let's see if we can remedy the situation.
Easy: volt times ampere equals watt, which is power, i.e. energy per time, with the unit $\mathbf{J} \cdot \mathbf{s}^{\mathbf{- 1}}=\mathbf{k g} \cdot \mathbf{m}^{\mathbf{2}} \cdot \mathbf{s}^{-\mathbf{3}}$. Insertion yields

$$
T=3.55 \cdot 10^{-14} \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{3}}{\mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{2}}=3.55 \cdot 10^{-14} \mathrm{~s}=36 \mathrm{fs}
$$

The backbone thus is right again. The scattering time is in the order of femtoseconds, which is a short time indeed. Since all variables enter the equation linearly, looking at somewhat other carrier densities (e.g. more than 1 electron per atom) or conductivities does not really change the general picture very much.

Third Task: Derive a number for v_{D}. We have (for a field strength $E=\mathbf{1 0 0} \mathrm{V} / \mathbf{m}=\mathbf{1} \mathrm{V} / \mathbf{c m}$):

$$
\begin{gathered}
\left|\mathrm{v}_{\mathrm{D}}\right|=\frac{E \cdot \mathrm{e} \cdot \mathrm{~T}}{m}=\frac{100 \cdot 1.6 \cdot 10^{-19} \cdot 3.55 \cdot 10^{-14}}{9.1 \cdot 10^{-31}} \frac{\mathrm{~V} \cdot \mathrm{C} \cdot \mathrm{~s}}{\mathrm{~m} \cdot \mathrm{~kg}}=6.24 \cdot 10^{-1} \frac{\mathrm{~V} \cdot \mathrm{~A} \cdot \mathrm{~s}^{2}}{\mathrm{~m} \cdot \mathrm{~kg}} \\
=6.24 \cdot 10^{-1} \frac{\mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{2}}{\mathrm{~m} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{3}}=6.24 \cdot 10^{-1} \mathrm{~m} / \mathrm{s}=624 \mathrm{~mm} / \mathrm{s}
\end{gathered}
$$

This is somewhat larger than the value given in the backbone text.
However - a field strength of $\mathbf{1} \mathbf{V} / \mathbf{c m}$ applied to a metal is huge! Think about the current density \boldsymbol{j} you would get if you apply 1 V to a piece of metal 1 cm thick.
It is actually $j=\sigma \cdot E=5 \cdot 10^{7} \Omega^{-1} \mathrm{~m}^{-1} \cdot 100 \mathrm{~V} / \mathrm{m}=5 \cdot 10^{9} \mathrm{~A} / \mathrm{m}^{2}=5 \cdot 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
For a more "reasonable" current density of $10^{3} \mathrm{~A} / \mathrm{cm}^{2}$ we have to reduce E hundredfold and then end up with $\left|\mathbf{v}_{\mathrm{D}}\right|=$ $6.24 \mathrm{~mm} / \mathrm{s}$ - and that is slow indeed!

Fourth Task: Derive a number for I. We have:

$$
I=2 \cdot v_{0} \cdot T=2 \cdot 1.17 \cdot 10^{5} \cdot 3.55 \cdot 10^{-14} \mathrm{~m}=8.31 \cdot 10^{-9} \mathrm{~m}=8.31 \mathrm{~nm}
$$

Right again! If we add the comparatively miniscule $\mathbf{v}_{\mathbf{D}}$, nothing would change.
Note, however, that the last equation does NOT mean that decreasing the temperature would lower I to eventually zero! Why? Because T isn't a constant but scales with the conductivity - look at the starting equation of the second task! And since the conductivity increases at lower temperatures, so does the mean free path.

