Essentials of the bipolar transistor:

- High emitter doping ($N_{\text {Don }}$ for npn transistor here) in comparison to base doping N_{Ac} for large current amplification factor $\gamma=1 \mathrm{C} / \mathrm{I}$.
$N_{\mathrm{Don}} / N_{\mathrm{Ac}} \approx \mathrm{K}=$ injection ratio.

$$
\gamma \approx \frac{N_{\mathrm{Don}}}{N_{\mathrm{Ac}}} \cdot\left(1-\frac{d_{\mathrm{base}}}{L}\right)
$$

Small base width $\boldsymbol{d}_{\text {base }}$ (relative to diffusion length \boldsymbol{L}) for large current amplification.
Not as easy to make as the band-diagram suggests!

Essentials of the MOS transistor:

Gate voltage enables Source-Drain current
Essential process. Inversion of majority carrier type in channel below gate by:

- Drive intrinsic majority carriers into bulk by gate voltage with same sign as majority carriers.
- Reduced majority concentration $\boldsymbol{n}_{\text {maj }}$ below gate increases minority carrier concentration $\boldsymbol{n}_{\text {min }}$ via mass action law

$$
n_{\text {maj }} \cdot n_{\text {min }}=n_{i}^{2}
$$

- An inversion channel with $\boldsymbol{n}_{\text {min }}>\boldsymbol{n}_{\text {maj }}$ develops below the gate as soon as threshold voltage $\mathbf{U}_{\mathbf{T h}}$ is reached.
- Current now can flow because the reversely biased pnjunction between either source or drain and the region below the gate has disappeared.

The decisive material is the gate dielectric (usually $\mathbf{S i O}_{\mathbf{2}}$). Basic requirement is:
High capacity \boldsymbol{C}_{G} of the gate electrode - gate dielectric - $\mathbf{S i}$ capacitor = high charge Q_{G} on electrodes = strong band bending = low threshold voltages U_{G}

- It follows:
- Gate dielectric thickness $\boldsymbol{d}_{\mathrm{Di}} \Rightarrow$ High breakdown field strength $U_{B d}$
- Large dielectric constant $\epsilon_{\mathbf{r}}$
- No interface states.
- Good adhesion, easy to make / deposit, easy to structure, small leakage currents, ...

$$
Q_{G}=c_{G} \cdot U_{G}
$$

Example:

$U=5 \mathrm{~V}, d_{\mathrm{Di}}=5 \mathrm{~nm} \Rightarrow E=U / d_{\mathrm{Di}}=$ $10^{7} \mathrm{~V} / \mathrm{cm}$!!
$\epsilon_{\mathbf{r}}\left(\mathrm{SiO}_{2}\right)=3.9$

Integration means:

1. Produce a large number (up to $\mathbf{1 . 0 0 0} \mathbf{0 0 0} \mathbf{0 0 0}$) of transistors (bipolar or MOS) and other electronic elements on a cm ${ }^{2}$ of $\mathbf{S i}$2. Keep thoses elements electrically insulated from each other.3. Connect those elements in a meaningful way to produce a system / product.

An integrated bipolar transistor does not resemble the textbook picture at all, but looks far more complicated \Rightarrow.

This is due to the insulation requirements, the process requirements, and the need to interconnect as efficiently as possible.

The epitaxial layer cuts down on the number of critical diffusions, makes insulation easier, and allows a "buried contact" structure.

Connecting transistor / elements is complicated; it has to be done on several levels

Materials used are AI ("old"), Cu ("new"), W, (highly doped) poly-Si as well as various silicides.

Essential properties are the conductivity σ of the conductor, the dielectric constant $\epsilon_{\mathbf{r}}$ of the intermetal dielectric, and the resulting time constant $\mathbf{T}=\sigma \cdot \mathbf{\epsilon}_{\mathbf{r}}$ that defines the maximum signal transmision frequency through the conducting line.

Integrating MOS transistors requires special measures for insulation (e.g. a field oxide) and for gate oxide production
-
Since a MOS transistor contains intrinsically a capacitor (the gate "stack"), the technology can be used to produce capacitors, too.

CMOS allows to reduce power consumption dramatically.
The process, however, is more complex: Wells with different doping type need to be made.

Using the third dimension (depth / height) might become necessary for integrating "large" structures into a small projected are (example: trench capacitor in DRAMs \Rightarrow).

Unwanted "topology", however, makes integration more difficult.

- Planarized technologies are a must since about $1995!\Rightarrow$

Typical wafer size for new factories (2007) : $\mathbf{3 0 0} \mathbf{~ m m}$ diameter, $\mathbf{7 7 5}$ $\mu \mathrm{m}$ thickness, flatness in lower $\mu \mathrm{m}$ region
Chip size a few $\mathbf{c m}^{\mathbf{2}}$, much smaller if possible

- Yield $\boldsymbol{Y}=$ most important parameter in chip production $=\%$ of chips on a wafer that function (= can be sold).
- $\boldsymbol{Y}=\mathbf{2 9} \%$ is a good value for starting production

Chip making = running about $\mathbf{2 0}$ times (roughly!!) through "materials" - "structuring" loop.

- About $\mathbf{4 0 0} \mathbf{- 6 0 0}$ individual processing steps (= in / out of special "machine") before chip is finished on wafer
More than $\mathbf{3 0}$ processing steps for packaging (after separation of chips by cutting)
Simple estimate: 99.9% perfection for each processing step means $Y<70 \%$.
Dirt in any form - as "particles" on the surface of wafer, or as "contamination" inside the wafer is almost always deadly
Particles with sized not much smaller than minimum feature sizes (i.e. $<\mathbf{1 0} \mathbf{~ n m}$ in 2007) will invariably cover structures and lead to local dysfunction of a transistor or whatever.
- Point defects like metal atoms in the Si lattice may precipitate and cause local short circuits etc. from the "inside", killing transistors
One dysfunctional transistor out of $\mathbf{1 . 0 0 0 . 0 0 0 . 0 0 0}$ or so is enough to kill a chip!

Being extremely clean is absolutely mandatory for high Yields Y !

[^0]- It won't be cheap!

Property	Number
Feature size	$\mathbf{0 , 2 ~} \boldsymbol{\mu m}$
No. metallization levels	$\mathbf{4 - 7}$
No. components	>6.108 (Memory)
Complexity	>500 Process steps
Cost (development and $\mathbf{1}$ factory)	ca. \$ 6.109

Moore's law predicts exponentially growth of "chip complexity" with a high growth rate - how far will it reach?
Problems and costs are growing exponentially with every new generation.
It follows: The market must grow exponentially too, if you want to make a profit.It follows: Large amounts of money can be easily made - or lost.
Falling behind thecompetition in your technology and yields means certain death for companies without a monopoly in some product.

Questionaire

Multiple Choice questions to all of 5

[^0]: - Use cleanrooms and hyper-clean materials!

