Stirlings Formula

Stirlings formula is an indispensable tool for all combinatorial and statistical problems because it allows to deal with factorials, i.e. expressions based on the definition 1-2•3•4-5 \qquad - \mathbf{N} := N!It exists in several modifications; all of which are approximations with different degrees of precision. It is relatively easy to deduce its more simple version. We have

$$
\ln x!=\ln 1+\ln 2+\ln 3+\ldots+\ln x=\sum_{1}^{x} \ln y
$$

With $\mathbf{y}=$ positive integer running from $\mathbf{1}$ to \mathbf{x}
For large \mathbf{y} we may replace the sum by an integration in a good approximation and obtain

$$
\sum_{1}^{x} \ln y \approx \int_{1}^{x}(\ln y) \cdot d y
$$

With $\int(\ln \boldsymbol{y}) \cdot \mathrm{d} \boldsymbol{y}=\boldsymbol{y} \cdot \ln \boldsymbol{y}-\boldsymbol{y}$, we obtain

```
|n x! \approxx}\boldsymbol{x}\cdot\operatorname{ln}x-x+
```

This is the simple version of Stirlings formula. it can be even more simplified for large \boldsymbol{x} because then $\boldsymbol{x}+\mathbf{1} \ll \boldsymbol{x}$. In \boldsymbol{x}; and the most simple version, perfectly sufficient for many cases, results:

$$
\ln x!\approx x \cdot \ln x
$$

However!! We not only produced a simple approximation for \boldsymbol{x} !, but turned a discrete function having values for integers only, into a continuous function, giving numbers for something like 3,141! - which may or may not make sense.
This may have dire consequences. Using the Strirling formula you may, e.g., move from absolute probabilities (always a number between $\mathbf{0}$ and $\mathbf{1}$) to probability densities (any positive number) without being aware of it.
Finally, an even better approximation exists (the prove of which would take some $\mathbf{2 0}$ pages) and which is already rather good for small values of \boldsymbol{x}, say $\boldsymbol{x}>\mathbf{1 0}$:

$$
x!\approx(2 \pi)^{1 / 2} \cdot \mathbf{x}^{(x+1 / 2)} \cdot e^{-x}
$$

