Micro/Nanosystems Technology

Dr. Dirk Meyners

Prof. Wagner
Lab Course UV-Lithography

Proximity Printing

\[R = \frac{3}{2} \sqrt{0.44 \cdot 10^{-6} \left(8 \cdot 10^{-6} + \frac{2.3}{2}\right)} \approx 3 \mu m \]

\[R = b_{\text{min}} = \frac{3}{2} \sqrt{\lambda \left(s + \frac{z}{2}\right)} \]

Exposure parameter:

- Proximity mode (gap: 8\(\mu \)m)
- Intensity: 26,67 W/cm\(^2\)
- Time: 1,9 s
- Dose: 50 mJ

Siemens star

- Resolution of printing device can be measured by the diameter \(d \) of the blurred region:

\[R = \frac{2\pi r}{\# \text{segments}} = \frac{\pi d}{\# \text{segments}} \]

\[d = 0.3*D \]

\[d = 0.15*D \]
Lab Course UV-Lithography

Tone of resist (Group 1): positive resist

Siemens star:

- dark: resist
- light: uncovered

\[d = 116.3 \, \mu m \]
\[\Rightarrow R = 5.07 \, \mu m \]
Lab Course UV-Lithography

Positive resist

- $b_{\text{min}} = 7 \mu m \triangleq$ resolution limit
- good pattern fidelity for 7 µm
Lab Course UV-Lithography

Positive resist

lines and spaces:
• not resolved for $b = 5 \mu m$
Lab Course UV-Lithography

Positive resist / after Lift-Off

dark: resist
medium: thin layer of Cr
light: Wafer

lines and spaces:
• $b_{\text{min}} = 10 \, \mu m$ with good resolution, $7 \, \mu m$ with bad quality \rightarrow lift-off was not completed
• partial lift-off \rightarrow poor pattern fidelity

Wagner / Meyners
Micro / Nanosystems Technology
Positive resist / after Lift-Off

Siemens star:
diameter of distortion

\[d = 162,8 \, \mu m \]
\[\Rightarrow R = 7,1 \, \mu m \]

→ The resolution gets worse after sputtering of Cr
→ From 5 µm to 7 µm