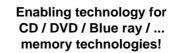

## 9.1.3 Summary to: 9.1 Optoelectronics - General Concerns


Optoelectronics has two basic branches:

- **1.** Light in  $\Rightarrow$  electrical signal out:
  - Optical sensors as single elements
  - "CCD" chips in "megapixel" matrices.
  - 2. Electricity in ⇒ light out; in two paradigmatic versions:
    - LED's
    - Laser diodes
- Here we only look at the second branch.
  - The semiconductors of choice are mostly the **III-V's**, usually in single-crystalline perfect thin films.
  - The present day (2008) range of wavelength covers the IR to near UV.
  - Indirect semiconductors like GaP can be used too, if some "tricks" are used.
- The index of refraction  $n=(\epsilon)^{\frac{1}{2}}$  and thus the dielectric constant  $\epsilon$  become important
  - Semiconductors have a relatively large index of refraction at photon energies below the bandgap of n ≈ 3 - 4.
  - Diamond has the highest **n** in the visible region
- The *thermal conductivity* becomes important because for generating light one needs *power* (which we avoided as much as possible for signal processing with **Si**!)
  - Again, diamond has the highest thermal conductivity of all known materials 5 times better than Cu!
- LED's come as cheap little "indicator" lights and recently also as replacement for "light bulbs".
  - Intense white light from LED's becomes possible, Advantages: High efficiencies and long life time
  - The key was the "taming" of the GaN material system for blue and UV LED's.
- LED's based on organic semiconductors (OLED) are rapidly appearing in OLED based displays.
  - Advantage: High efficiencies because of active light generation.
    Problem: Product life time; sensitivity to air.
- Semiconductor "Diode" Lasers are high-power" LED's plus "mirrors"
  - Advantage: Small and cheap. Problems: Low power, "Quality".

|                           | Wavelength<br>(nm) | Typical<br>Semiconductor          |
|---------------------------|--------------------|-----------------------------------|
| Infrared                  | 880                | GaAlAs/GaAs                       |
| Red                       | 660 - 633          | GaAlAs/GaAs                       |
| Orange<br>to<br>Yellow    | 612 - 585          | AlGaInP<br>GaAsP/GaP<br>GaAsP/GaP |
| Green                     | 555                | GaP                               |
| Blue<br>to<br>Ultraviolet | 470 - 395          | GaN/SiC<br>GaN/SiC<br>InGaN/SiC   |

| Typical<br>Semiconductor | Dielectric<br>constant | Thermal<br>conductivity<br>[W/cm · K] |
|--------------------------|------------------------|---------------------------------------|
| Si                       | 11.9                   | 1.5                                   |
| GaAs                     | 13.1                   | 0,45                                  |
| GaP                      | 11.1                   | 1.1                                   |
| GaN                      | 8.9                    | 1.3                                   |
| SiC                      | 10                     | 5                                     |
| C (Diamond)              | 5.8                    | 22                                    |





