
The Second Law and Computer Science

The essence of the second law is entropy, and that is also the essence of part of computer or information science. If
we want to grasp the relation between Entropy and Information, we must first define the precise meaning of
information in a mathematical way. For entropy we did that already.

The first insight we need to have is that it can't be done as one naively assumes. Let's look at an example to
make that very clear. So which one of the following strings of symbols carries more information?

YOU PASSED THE EXAM1.
ADE SPUX AMTEY ESHO2.

Well, you're wrong. It is not No.1! It isn't No. 2 either. Both strings contain exactly the same amount of
information—if you are a computer doing the judgement. Being a computer, you only go for the syntax—the
pattern or structure—of a statement. You never go for the semantics, the meaning, because for you there is no
meaning. The syntax of both strings is the same. Same number of symbols, same symbols. The way they are
arranged is meaningless for the kind of information theory we are after.
If you think that is pointless, you are wrong. Because both strings contain the same number of bits that need to
be processed, and that is all computers care for. If you transmit those bits on some data channel, they need
exactly the same resources. Their susceptibility to getting distorted, mutilated, decoded or whatever, is exactly
the same. And it would be the same for all the other strings you could form with the set of symbols given.
Now look at those two strings:

What?1.
Q'est-ce que?2.

Same semantics or meaning here but the French "what" carries more information in the technical sense
explained above. Thinking about that a bit you realize that no computer can ever know all the various codes there
are (e.g. other languages, including those of aliens; Morse code, ..) that contain the same semantics! Syntax is
all we can go for.

Since slime bags like you and me are not computers, we have that habit of looking for some meaning in strings of
symbols. This is often difficult and always a bit ambiguous. Three lawyers find at least four different meanings in any
paragraph of some law - if they wouldn't, we would not need courts of law to decide which meaning is the "true" one,
and a lot of people would be out of jobs plus a lot of (different) people would be happier.
It would be a major break-through in computer science if we could come up with a clear way to teach computers to
find meaning in a string of symbols like: "Georgia businessman Herman Cain told the debate audience on the CNBC
television network that the United States needs to concentrate on issues at home if it wants to avoid the massive
debt that is plaguing Italy." (Voice of America; Nov. 10, 2011; picked one at random ).

What does that mean? Do the United States have to take over the Italian deficit if they don't concentrate? Is is
enough if one state doesn't concentrate or do all of them have to be inattentive? How does a state concentrate
anyway? On issues?
Computers won't get what that could mean; witness the the quick ascend and inglorious end of "artificial
intelligence".

Let's be honest. There is no good definition of what constitutes meaning in some string of symbols. Even the
definition of what constitutes information isn't so great—we only have a working one that Shannon introduced in
1948.
For that we first look at a group of symbols, e.g. an alphabet with N symbols (most of them called letters). If one
forms random strings with the symbols of the alphabet, all symbols will occur with equal average frequency, in stark
contrast to the formation of words in languages. Some symbols / letters are found far more frequently in "meaningful"
words of some language than others. For example, we have a probability of 12.702 % for an "e" occurring in an
English word, and only a probability of 0.074 % for a "z".

But let's look at random strings first. The probability p i for the occurrence of the symbol No. i is thus the same
as for all the other symbols and simply given by pi = p = 1/N.

Now let's ask the big question: How much information can be carried in just one of the N different symbols?
To assess this, we imagine that we we are receiving a string of symbols via some information channel and are waiting
for the next one to be transferred. We define the amount of information I contained in that symbol as

 

N  =  2I
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The meaning of that equation is that I gives the smallest possible number of "yes" / "no" questions you need to
ask in order to find out which symbol it is.
Imagine your friend has already received that symbol, and you have to find out what it is by questioning her. You
don't ask: "Is it an "A"? "No." Is it a "B"? "No", ... You ask: Is it in the first half of the alphabet" "No". "Is it in the
first half of the second half"?... Much faster; fewest amounts of questions.
Rewriting the equation above for I we get:
 

  
I  =  ld N  = ld (1/p)

   
"ld " is short for the "logarithm dualis", the logarithm for base 2.

Simple but rather useless. So let's go for the next step. Let's allow that the probabilities for the occurrence of the
symbols can be different, just like in the alphabet of a real language. The information I(zi) that is contained in the i-th
symbol that we now call zi will then be given by

   
  

I(zi)  = ld (1/pi)   =  – ld (pi)

   
This has an unexpected consequence: Symbols that only occur rarely contain more information than the
ubiquitous ones. Look up the logarithm module if you can't see that.
If you think about that, this is as it should be. If you just get another "e", you just know less in comparison to a
"z" or "x" or "j" coming down the line. It's harder to guess that one oft the latter will appear, and therefore more
surprising.

Seen like that, we can define information in a qualitative way as follows:

 

The information content in some
symbol (or string of symbols) is

proportional to the degree of
our surprise upon receiving it

 

Now let's look at the mean or average information H that is contained in an alphabet with N symbols that is specified
by defined pi values. For example, the English alphabet is characterized as follows:

   

Probability of letters in English
Source: Wikipedia

 
In order to get the average information H contained in strings made with this alphabet, we must sum over the
information contained in the symbols multiplied by their probability of occurrence and get
 

Iron, Steel and Swords script - Page 2

http://www.tf.uni-kiel.de/matwis/amat/iss_3_2023/kap_5/illustr/s5_2_1.html
http://www.tf.uni-kiel.de/matwis/amat/iss_3_2023/kap_5/illustr/s5_2_1.html


H  = 
  N

 Σ
i = 1

 pi · I(p i)   =  –
  N

 Σ
i = 1

pi · ld (pi)

 
That is Shannon's classical equation (worth a Noble prize). Shannon named the quantity H "Entropy ". That shouldn't
come as a surprise anymore. It is quite similar to Boltzmann's formula for the "real" entropy; it contains the same
kind of thinking.

Shannon's entropy H is important. For example, if you want to transfer a message with Z symbols in the chosen
alphabet, you need at least H · Z digital bits for that. In other words, Shannon's equation gives the "bandwidth "
that a channel must have and that is, of course, of overwhelming importance to real signal transmission.

So what are the relations between Shannon's information entropy and the thermodynamic Boltzmann entropy? Are
they identical?

Not exactly. But they are close enough. H is different from the thermodynamic entropy (always written as S) in
two minor points:

The proportionality constants are different. But that is truly trivial.
The proper thermodynamic entropy S is only well-defined for equilibrium ("nirvana"). It corresponds directly
to the maximal H that we would get if all symbols have equal probability.

If one takes that into account and does proper work, a quite interesting relation for the thermodynamic entropy S
contained in 1 bit of information emerges:

   

S(1 bit)  =  – k · ln2

   
This means that an entropy increase of 0,957 · 10–23 JK–1 in a given system destroys exactly 1 bit of
information. Since entropy in a closed system can never spontaneously decrease, information cannot
spontaneously come into being.
That's not just an "esoteric" theory. This solved an old and deep puzzle of thermodynamics. Leo Szilard was the
first one who used this insight to exorcise "Maxwell's demon forever from the world of science. Google it
yourself!

Whatever way you look at it, there is some connection between information theory and thermodynamics. Will
computer science, information science, and so on, one day become just another subgroup of physics, like chemistry
(or possibly biology soon)?

Nobody knows for sure. Some famous scientists like Peter Atkins contain that this is all a crock of sh nonsense.
Some equally famous scientists like Roger Penrose , however, believe that here we have the key for the new
physics of the future.
So non-famous guys like you and me can only wait and see, preferably while relaxing (for having peace and quiet
you may need to shut down some information channels; send her shopping) and having a beer or two.
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