
 

Science of Uniaxial Deformation

Uniaxial Strain and Test Conditions
Uniaxial Deformation simply means that you push or pull in one direction only.

Here are two examples of uniaxial deformation occurring in daily life:

 

Uniaxial deformation

Here we pull, producing
tensile stress and strain.

Here we push, producing
compressive stress and
strain.

 

   
When we do a tensile test we elongate the specimen at a defined strain rate by applying
the right stress via a feed-back loop.
We need a few definitions now:

σ = stress = force per area. The dimension of stress is [σ] = Nm–2. 1 Newton per
square meter is called 1 Pa (Pascal)
ε = strain = (l(σ) – l0)/l0. l(σ) is the length of the specimen at the applied stress σ;
l0 is the initial length or l0 = l(σ = 0). Strain is an entity without a unit!
Strain as defined here (in contrast to the main text) times 100 gives the elongation in
percent (%). Note that "percent" is not a unit, just a relation.
d ε /dt, the derivative of the strain with respect to time t, is the strain rate.

Standard
tensile

specimen

For tensile testing you need a standardized specimen (see figure on the right; all
arrows indicate well-defined dimensions) with a size that fits your machine. Since the
maximum stress the machine can apply is limited, your specimen should not be too
big - the machine then can't break it.
You also need to measure the strain and the stress with some kind of precision. There
are many ways for doing that but I will not go into this.
The settings for the strain rate are limited too, of course. For very low strain rates you
would have to wait very long until your specimen finally fractures; they are also difficult
to measure. For very large strain rates you might need more stress than the machine
can muster.
Of course, you need to measure the strain all the time and feed the results into some
electronic feed-back loop that controls the stress to the amount needed to produce the
desired strain rate.

 

Temperature control is also not easy. You could put the whole machine in a room with defined temperature but
that is not too practical if you deviate too much from room temperature. This leaves only to construct a
"temperature chamber" around the specimen, not an easy task but doable.
OK—after you came up with a few 100.000 Dollars for buying a machine, found a suitable room and a machine
shop that can shape the specimen, you may now commence with uniaxial testing of materials.

   

Iron, Steel and Swords script - Page 1

S
ci

en
ce



Tensile Test – Definitions
When we do a tensile test we will get a stress-strain diagram as a result. Below is one (from some steel) as it comes
out of the machine. My machine speaks German so I added the translations in red.

 

Tensile stress - strain diagram of some steel

 
The machine indicates the stress and strain values for the (ultimate) tensile strength and fracture by blue lines.
It can do that because it is smart enough to find the maximum of a curve and the end of one.
It does not indicate the critical yield strength RP because it is not smart enough to detect that. In fact, there are
special definitions and recipes to arrive at a number for RP but I will not go into that.
In the curve shown the location of RP is plain to see but that is not always so. We also see that some strange
things go on for a while after RP was reached. The curve gets kind of wobbly, and much is made of this in real
testing.
It is not unusual that the stress - strain curve wiggles a bit or runs through a small peak as soon as plastic
deformation begins at RP. That just signifies that before plastic deformation can proceed in a major way by
dislocation movement, the dislocations either have to be generated first, or ripped off from the obstacles that
pinned them down, or both. That happens at somewhat different stresses in different parts of the sample, and
that's why the curve might become "noisy". It's an important phenomena and a nuisance. Since at this point we
do not yet know what dislocations are, I will get back to this point much later.
Of course, the slope of the stress σ-strain ε curve in the elastic region gives Youngs' modulus in a
straightforward way as σ/ε or better, since we don't have a perfect straight line, as the slope or
Y = dσ/dε

A maximum in any curve is a useful thing because it is easily detected and interpreted. In a stress-strain curve it
denotes the ultimate tensile strength RM because, as the word implies, stress above RM would invariably produce
fracture. RM of course, is a useful property to know for engineering materials.

Unfortunately , in the science of materials, RM is rather unimportant. It denotes a stress that does not truly exist
in the material. It is easy to see why.
The tensile test machine calculates the stress by dividing the force it applies by the initial cross-sectional area of
the specimen. That is fine for the beginning of the experiment, when the actual cross-sectional area of the
specimen is close to its initial one. However, as the specimen is stretched well beyond the yield point, it must
get thinner because its volume cannot change a lot. The cross-section thus decreases and the true stress would
be: applied force divided by the actual and smaller cross-sectional area.
It is, of course, quite easy to calculate the true stress σ* (that's what we really call it). It is always larger than the
nominal stress σ that the machine uses. Going through the numbers (assuming no volume change) we obtain
 

σ*  =  σ · (ε + 1)

   
Alas! If we replot the stress-strain curve now for true stress, the useful maximum is gone! That's one reason why
we usually don't do that. The other reason is that in any application the trues stress is irrelevant. You want to
know when failure occurs relative to the dimensions of the material you used, not the dimensions it might
assume.

Things get worse. From a scientific point of view, the nominal strain we used is also not the real thing. We need the
true strain.
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Now why is that? Imagine you strain your specimen just by 1 %. Then you strain it again by 1 %, and again, and
again. After you did that 10 times, how large is the total strain?
If you go for 10 × 1 % = 10 %, you are probably not a rich person. If you get 10 % interest on your capital of 100
$, how much accumulated interest do you have after 5 years? 5 × 10 % = 50 %?
No! After the first year you get 10 $ interest and your capital is now 110 $. After the second year, you get 11 $
interest on that. Your total capital after 5 years is $ (100 + 10 + 11 + 12 + 13 + 14) = $ 160 and your
accumulated interest is 60 $ and not 50 $.
It's called compound interest calculation and if you ever learned about that in school, you hated it.
We need to do the same thing for the strain if we want to consider the true strain ε* as being the final strain after
straining bit by bit. Of course, it is again (almost) easy to calculate, here is the result.

   

ε*  =  ln (ε + 1)

   
Sorry. The dreaded logarithms raise their ugly heads! Even the logarithm naturalis to base e!
Either you know what that means or you don't. Consulting this module might refresh your memory but will not
substitute for all the (still rather elementary) math you may have been deprived off.

While we usually do not plot stress-strain diagrams with true strain either, we need it as soon as we calculate
properties from a stress-strain curve like the fracture energy. Or as soon as we start comparing tensile and
compressive testing, see below.
There is one more thing that we can learn form uniaxial testing: Above I stated that the specimen gets thinner
because its volume cannot change a lot. That is certainly true but the question we ask now is "how thin?"

  

Specimen contractions perpendicular to the pull
axis.

 
Well, we don't know so we must measure it. We have some strain ε 2 perpendicular to the pull direction and thus
a length change of 1 + ε2 in the geometry shown above. Since the sample gets longer but thinner, ε2 must be
negative. We have whar is called "lateral contraction".
Measuring ε1 and ε2 allows to define a new material parameter, called Poisson's ratio ν

  

ν  =  –
ε1

ε2

   
You should have a question now: "why don't we just calculate ν once and for all, assuming that the volume stays
constant". The answer is that we do that, of course. The result is
ν(const. volume) = 0.5. Fine. Now look at the measured values of Poisson's ratio:
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Material  Poisson's ratio ν

Polymers  0.3 - 0.4

Metals  0.25 - 0.35

    Steel
    Aluminum
    Magnesium

0.3
0.33
0.35

Diamond 0.2 (smallest value)

Const. volume  0.5

 
The volume of a specimen in a tensile test, obviously, does not stay constant. No big deal. Why should it? After
all, the distance between the atoms gets considerably larger when you pull at them.
We have no choice but to live with measured numbers for Poisson's ratio. Yes, it is never far from 0.5 and thus is
not as important as Young's modulus. It is nevertheless needed for any calculations that try to do better than to
just give orders of magnitude.

   

 Tensile Test: Ultimate Tensile Strength and Necking
Taking stress-strain curves with nominal stress and strain produces the maximum discussed above, conveniently
denoting the ultimate tensile strength RM. It also denotes necking, the phenomenon that the specimen starts to
develop a neck, a region where it is thinner than in the rest of its body. In real life necked (and ruptured) specimen
look as shown in this link; schematically it looks like this:
 

Necking and RM

   
Why is the maximum of the (nominal) stress-strain curve and the beginning of necking related?

The answer is found as soon as we look at the general dependence of most stress-strain curves on the strain rate
dε/dt . While curves taken at different strain rates may not be very different, you always need somewhat larger
stresses at higher strain rates to achieve the same strain.
Keeping this in mind we now look at a specimen under tensile stress and assume that in a small part ( region 2
in the figure below) the strain is a little bit larger than in the rest or region 1. Maybe there is a little defect,
whatever. The question is: what is going to happen in this case?
The answer is found in the figure below. It shows two stress-strain curves for two different stress rates dε/dt; in
the figure abbreviated by the usual dot on top of the function (not possible in HTML). The exact shape of the two
curves doesn't matter; the only important point is that it always takes more stress to produce the same strain a
higher strain rates.
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Since the nominal stress is same everywhere, region 2 with the larger strain will be found:

On the lower curve to the left of the maximum.
On the upper curve to the right of the maximum.

To the left of the maximum region 1 thus will experience a larger strain rate than region 2 so it will always catch
up with region 1 again, and the two regions equilibrate again.
To the right of the maximum, region 2 experiences the larger strain rate and strains faster and faster in
comparison to region 1. Region 2 thus becomes thinner and thinner since the volume must be (approximately)
preserved. The true stress becomes larger and larger since the cross-sectional area becomes smaller. Since the
total strain rate must be unchanged, straining occurs more and more only in the necking region. The whole
system becomes unstable and runs off to fracture.

   

 Compressive Testing
In compressive testing something new might occur that we have to deal with first: The whole sample bends outwards
while still in the elastic region. Its length in the bend state is pretty much what it was without stress but since it is
bend, the distance between the two ends is smaller.
We are no longer doing uniaxial testing now! This is shown schematically in the figure below.

 

Outward bending occurs as soon as some
critical compressive stress is reached

 
You know that, of course. It may happen when you try to stab something with your sword. It is clear without
doing calculations that bending happens more easily for slender specimen than for squat ones. Calculations,
which are not very difficult to do, give clear criteria for bending under compression.

For uniaxial testing, however, bending under compression is irrelevant because if it occurs you have no longer uniaxial
testing. Your specimen now experiences complex stresses. On the convex side is under tensile stress, on the
concave side it is under compressive stress, and in the middle there is no stress at all. We will need that later, so it
is a good idea to look a the following figure and ponder its meaning now:
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Bend specimen experience tensile and
compressive stress

   
If our specimen bows out as in the figure above, the outer (right) part will be under tensile stress since it is longer
than the original length.
By the same token, the inside part will be under compressive stress; it is now shorter.
It follows that there must be a neutral part somewhere in the interior with no stress or strain, since its length has
not changed. In the example above, we can expect that the neutral part is right in the middle.

Bow like that cannot occur under tensile testing, and that is one of the reason why we prefer the tensile test. If we
need to do compressive testing, we need to make our specimen short and thick to avoid "bow". If we do that and now
go for both modes, i.e. push and pull we get stress-strain curves as shown below.

 

Stress -
strain curves
for tensile
and and
compressive
testing are
quite
different for
nominal
stress and
strain

Stress -
strain curves
for tensile
and and
compressive
testing are
almost
identical for
for true stress
and strain

 
Going from nominal stress and strain to true stress and strain simply means that you take into account that the
cross-sectional areas change during deformation. If you elongate a specimen it gets thinner, if you compress it, it
gets thicker. Stress is force divided by area and we need to take that into account of we want to be precise. Then
everything is fine - except that calculating true stress and strain is surprisingly difficult to do! So people tend to
stay with the nominal stress and strain , knowing that they could always convert it if needed.
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So I did not cheat you when I claimed that "the stress strain-curve for not too large stresses (in compressive testing)
looks the same, just inverted, as in tensile testing. Well, yes - but only if you avoid bow and take a little care to
adjust for the changed geometry.

Adjusting the geometry is what we do when we moved to true stress and strain. If the effort for doing this is seen
as inconsequential or overbearing depends on one's perspective.

So there is more to uniaxial testing then meets the eye. Yes, but don't deceive yourself. I only scratched the surface
here. There is far more to that simple experiment then I could relate in this short "science" module.
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