
3.7.4 Summary to: Dielectrics and Optics

The basic questions one would like to answer with respect to the optical behaviour of materials and with respect to the simple situation as illustrated are:

- 1. How large is the fraction R that is reflected? 1 R then will be going in the material.
- 2. How large is the angle β , i.e. how large is the refraction of the material?
- 3. How is the light in the material absorped, i.e. how large is the absorption coefficient?
- Of course, we want to know that as a function of the wave length λ or the frequency $v = c/\lambda$, the angle α , and the two basic directions of the polarization (

All the information listed above is contained in the complex index of refraction *n*^{*} as given ⇒

$n = (\epsilon_r)^{1/2}$	Basic definition of "normal" index of refraction n
<i>n</i> * = <i>n</i> +i·к	Terms used for complex index of refaction n^* n = real part κ = imaginary part
$n^{\star 2} = (n + i\kappa)^2 = \epsilon' + i \cdot \epsilon''$	Straight forward definition of n *

Working out the details gives the basic result that

- Knowing *n* = real part allows to answer question
 1 and 2 from above via "Fresnel laws" (and "Snellius' law", a much simpler special version).
- Knowing κ = imaginary part allows to answer question 3 ⇒

<i>E</i> _x =	$\exp-\frac{\omega\cdot\kappa\cdot x}{c}$	· exp[i · (<i>k</i> _x · <i>x</i> − ω · t)]
	Amplitude: Exponential decay with κ	"Running" part of the wave

Knowing the dielectric function of a dielectric material (with the imaginary part expressed as conductivity σ_{DK}), we have (simple) optics completely covered!

- If we would look at the tensor properties of ∈, we would also have crystal optics (= anisotropic behaviour; things like birefringence) covered.
- We must, however, dig deeper for e.g. non-linear optics ("red in - green (double frequency) out"), or new disciplines like quantum optics.

$$n^{2} = \frac{1}{2} \left(\epsilon' + \left(\epsilon'^{2} + \frac{\sigma_{DK}^{2}}{4\epsilon_{0}^{2}\omega^{2}} \right)^{\frac{1}{2}} \right)$$
$$\kappa^{2} = \frac{1}{2} \left(-\epsilon' + \left(\epsilon'^{2} + \frac{\sigma_{DK}^{2}}{4\epsilon_{0}^{2}\omega^{2}} \right)^{\frac{1}{2}} \right)$$

Questionaire Multiple Choice questions to all of 3.7