Ferromagnetic Materials

Here is a list of ferromagnetic (including **ferrimagnetic**) materials (from the "Kittel"). Besides the chemical formula, the <u>Curie temperature</u> T_C and the <u>magnetic moment</u> m_m of the molecules (in units of the <u>Bohr magneton</u> m_B) is listed

Material	<i>T</i> _C [K]	m _m
Fe	1043	2.22
Со	1388	1.72
Ni	627	0.606
Gd	292	7.63
Dy	88	10.2
CrO ₂	386	2.03
MnAs	318	3.4
MnBi	630	3.52 + 3.6 Mn -0.15 Bi
EuO	69	6.8
NiO / Fe (Ferrit)	858	2.4
Y ₃ Fe ₅ O ₁₂	560	5.0

- The list could be much longer, but we see a number of interesting facts.
 - There exist more elemental ferromagnets than just the common trio Fe, Ni, Co but not at room temperature!
 - Elements that do not form a ferromagnetic elemental crystal, may become from ferromagnetic crystals in combination with some other atoms. This is especially true for Mn and Cr compounds.
 - There are many "strange" oxides or mixtures of oxides of non-magnetic elements (EuO) or magnetic elements that are ferri- or ferromagnetic. Most compounds with the composition MOFe₂O₃ and M being some bivalent metal (including Fe) are ferrimagnets.
 - The total magnetic moment carried by the atoms or molecules can be rather large; it is a combination of the moments of the atoms (and, if applicable, whatever free electrons contribute). It is constructed from positive and negative contributions for ferrimagnets (as shown for the **MnBi** case), It is, however not obvious, if the total magnetic moment from some compound is "ferro" (all contributions same direction or sign) or "ferri" (different signs). While most oxides are "ferro", some (e.g. **CrBr₃**, **EuO**, **EuS**) are "ferro".
- Here is a list of anti-ferromagnetic materials; T_C is now the Néel temperature

Material	<i>T</i> _C [K]
Cr	308
MnO	116
MnS	160
NiO	525
FeCl ₂	24
FeO	198
CoCl ₂	25

CoO	291
NiCl ₂	50

- We find the by now usual suspects Fe, Ni, Co, Mn, Cr and their oxides, but also plenty of other compounds (mostly not listed).
- While anti-ferromagnetic ordering provides endless challenges for solid state physicists, it appears that there are no practical uses for this magnetic property at present.