Übertragung von Sprache und Musik

-Unterrichtsmaterialien-

time [sec]

frequency [kHz]

bearbeitet von

Dipl. Phys.
Stephan Wörmke

Technische Fakultät
Christian-Albrechts-Universität zu Kiel
Lehrstuhl für Netzwerk- und Systemtheorie
Inhaltsverzeichnis

1 Einleitung 1

2 Physik von Sprache und Musik 3
 2.1 Was ist Schall? 3
 2.2 Luftschall 4
 2.3 Einteilung der Schallereignisse 5
 2.4 Mechanische Schallquellen 5
 2.4.1 Schwingende Saiten 6
 2.4.2 Schwingende Luftsäulen 7

3 Klanganalyse von Musikinstrumenten 9
 3.1 Das Zeitsignal 10
 3.2 Die Lautstärke 11
 3.3 Tonhöhe, Tonleitern 12
 3.4 Klangfarbe 12
 3.5 Die Biophysik des Gehörs 14
 3.5.1 Die Cochlea - ein intelligentes Interface 14
 3.5.2 Das Innenohr als Resonator 16
 3.5.3 Das Innenohr als Wellenleiter 17
 3.5.4 Passive Strukturbildung im Innenohr 17
 3.6 Einteilung der Musikinstrumente 19
 3.7 Klanganalyse an Beispielen 19
 3.7.1 Die Flöte 20
 3.7.2 Die Gitarre 22
 3.7.3 Die Stimme 24
 3.8 Das Programm overtone 24
4 Selbstbau eines Radios 27
4.1 Einleitung .. 27
4.2 Radiosender 28
 4.2.1 Schaltplan des Senders 28
 4.2.2 Funktion der Schaltung 28
 4.2.3 Betriebsdaten der Schaltung 29
 4.2.4 Aufbau der Schaltung 29
 4.2.5 Tabelle der benötigten Bauteile 31
 4.2.6 Zusätzliche Anmerkungen zur Schaltung ... 31
4.3 Radioempfänger 32
 4.3.1 Empfang des Senders mit einem Weltempfänger .. 32
 4.3.2 Empfang bei Amplitudenmodulation 32
 4.3.3 Empfang bei Frequenzmodulation 34
4.4 Antenne .. 37
 4.4.1 Antenne für Schallwellen 37
 4.4.2 Antennen für elektromagnetische Wellen ... 38

5 Digitale Signalübertragung 41
5.1 Digitalisierung und Eigenschaften 41
 5.1.1 Einleitung 41
 5.1.2 Digitalisierung 42
 5.1.3 Fragen/Aufgaben 44
 5.1.4 Ergebnisse 45
5.2 Spektren und Filterung 47
 5.2.1 Einleitung 47
 5.2.2 „Digitaler“ Sinus 47
 5.2.3 Kurzzeitspektren 48
 5.2.4 Fragen/Aufgaben 49
 5.2.5 Spektrogramme 49
 5.2.6 Ergebnisse 50
5.3 Anwendungen 54
 5.3.1 Einleitung 54
 5.3.2 Modulation 54
 5.3.3 Codierung 55
 5.3.4 Geräuschreduktion 57
 5.3.5 Psychoakustik 57
1. Einleitung

Es ist lange Tradition an der TF Wissenschaft nicht im oft zitierten Elfenbeinturm zu betreiben, sondern zu versuchen die eigene Arbeit in die Öffentlichkeit und dabei vor allen Dingen an die Schulen an die Schulen zu tragen. Aus diesem Grunde bietet die TF eine Vielzahl von Angeboten für Schülerinnen und Schüler aber auch für deren Lehrkräfte an.

1. Einleitung
2. Physik von Sprache und Musik

In fast allen Bereichen der Physik begegnen wir dem Phänomen der Wellen. Licht kann als elektromagnetische Welle interpretiert werden, Erdbeben führen zu wellenhaften Bewegungen des Erdbodens und selbst die Quantenmechanik macht intensiv Gebrauch vom Begriff der Wellenfunktion. In allen diesen unterschiedlichen Bereichen finden wir charakteristische Eigenschaften der untersuchten Objekte wieder: Interferenz, Beugung, Brechung, Reflexion usw., die alle mit einem ähnlichen Formalismus beschrieben werden können.

In diesem Kapitel soll am Beispiel von Schallwellen, die unserer Alltagserfahrung und damit dem Schulunterricht zugänglich sind, die so zentralen Eigenschaften von Wellen diskutiert werden, die auf so zahlreiche Gebiete der Physik und Technik zur Beschreibung der unterschiedlichsten Phänomene übertragen werden können.

2.1 Was ist Schall?

Die Lehre vom Schall wird Akustik genannt. Ihr Untersuchungsgegenstand sind die physikalischen Vorgänge, die z.B. im menschlichen Ohr einen Schall-
4 2. Physik von Sprache und Musik

eindruck hervorrufen. Insbesondere beschäftigt sich die Akustik mit den Ursachen und der Ausbreitung von Schallwellen. Die in der Akustik untersuch-

2.2 Luftschall

Im folgenden soll dieser Spezialfall des Schalles zugrundegelegt sein. Luftschall entsteht durch Schwankungen der Luftdichte, die durch eine Schallquelle angeregt werden. In der Folge entstehen Über- und Unterdrücke, die sich sowohl örtlich wie auch zeitlich dem herrschenden Gleichgewichtsluftdruck anzupassen suchen.

In charakteristischen Abständen entlang einer Schallwelle wiederholen sich in Ausbreitungsrichtung die einzelnen Erregungszustände. Bei konstanter
2.3 Einteilung der Schallereignisse

Anregungsfrequenz f der Schallquelle sind die Abstände durch die Wellenlänge λ gegeben:

$$c = f \cdot \lambda. \quad (2.1)$$

2.3 Einteilung der Schallereignisse

Die vielfältigen Schallphänomene lassen sich in vier grundlegende sogenannte Schallereignisse einteilen: Töne, Klänge, Geräusche und Knalle.

- **Töne**
 Ein Ton stellt das einfachste Schallereignis dar. Seine physikalische Ursache ist eine reine Sinusschwingung. Charakterisiert wird ein Ton durch die sogenannte Tonhöhe und Tonstärke, die weiter unten definiert werden.

- **Klang**
 Als einen Klang bezeichnet man ein Gemisch aus verschiedenen Tönen deren Frequenzen ganzzahlige Vielfache der Frequenz des tiefsten auftretenden Tons, des sogenannten Grundtons, sind. Die höherfrequenten Töne werden Obertöne genannt.

- **Geräusch**
 Ein Gemisch zahlreicher Töne mit rasch wechselnden Frequenzen und Stärken bezeichnet man als Geräusch und ist die bei weitem häufigste akustische Erscheinung. Jedes Geräusch besitzt eine spezifische Charakteristik, an der es zu erkennen ist.

- **Knall**
 Ein Knall wird durch eine kurzandauernde mechanische Schwingung großer Amplitude verursacht.

Die Quellen solcher Schallereignisse kann man primär in mechanische und elektrische Schallquellen einteilen, je nachdem ob vorwiegend mechanische oder elektrische Energie übertragen wird.

2.4 Mechanische Schallquellen

Mechanische Schallquellen werden je nach Art und Beschaffenheit der Gebilde, die zur Schallerzeugung führen, unterschieden. Man unterteilt sie typischerweise wie folgt:
• Saiten,
• Stäbe,
• Zungen,
• Membranen,
• Platten,
• Luftsäulen.

Insbesondere fallen unter diese Schallquellen Musikinstrumente und das menschliche Sprachorgan. Beide sind schwingende Systeme mit unendlich vielen Freiheitsgraden, d.h. sie können, zumindest theoretisch, in unendlich vielen Eigenschwingungen schwingen.

In Hinsicht auf die Untersuchung der Physik von Sprache und Musik sollen im folgenden nur die schwingenden Saiten und Luftsäulen untersucht werden.

2.4.1 Schwingende Saiten

In der Regel ist die Schallabstrahlung durch eine Saite selbst gering. Die durch die Schwingung verursachten Druckunterschiede zwischen den entgegengesetzten Seiten einer schwingenden Saite gleichen sich schnell aus. Einen brauchbaren Klang erhält man dann durch Kopplung mit einem geeigneten akustischen Resonator.

Die Eigenfrequenzen f_n einer Saite hängen neben der Länge l auch von der Dichte ρ des Saitenmaterials und von der Zugspannung ab mit der sie gespannt ist. Letztere ergibt sich als Quotient aus der Spannkraft F und dem Saitenquerschnitt S:

$$f_n = \frac{n}{2l} \sqrt{\frac{F}{\rho S}} = \frac{2}{n} c_s,$$

wobei c_s der Schallgeschwindigkeit entspricht. Mit n ist die Ordnungszahl der Schwingung bezeichnet.
2.4. Mechanische Schallquellen

Abbildung 2.1: Grundschwingung und Oberschwingungen einer gespannten Saite.

- **Grundschwingung**
 Frequenz $f_0 = 1. \text{ Harmonische}$

- **1. Oberschwingung**
 Frequenz $f_1 = 2. \text{ Harmonische}$

- **2. Oberschwingung**
 Frequenz $f_2 = 3. \text{ Harmonische}$
 usw.

2.4.2 Schwingende Luftsäulen

Auch Luftsäulen, die sich z.B. in einem Rohr befinden, lassen sich zu einer harmonischen Folge von Schwingungen anregen, wobei stehende Wellen entstehen. Neben der Rohrlänge l ist zudem von entscheidender Bedeutung, ob das entsprechende Rohr in dem sich die schwingende Luft befindet einseitig oder beidseitig offen bzw. ganz geschlossen ist. Einseitig offene Rohre bezeichnet man auch als gedackte Pfeifen, beidseitig offene als offene Pfeifen.

2.4.2.1 Einseitig offene Rohre

In einem einseitig geschlossenen Rohr kann sich eine unendliche Folge von Eigenschwingungen ausbilden. Ihre Frequenzen werden im wesentlichen durch die Rohrlänge l bestimmt, die gerade einer Viertelwellenlänge $\lambda/4$ entspricht. Die Oberschwingungen ergeben sich als ungeradzahlige Vielfache der Grundschwingung. Die Eigenfrequenzen ergeben sich also aus

$$f_n = \frac{2n - 1}{4l} c_s. \quad (2.3)$$
Bei genauerer Betrachtung muß die Rohrlänge l durch einen Faktor a ergänzt werden. Dies liegt daran, daß die Druckknoten nicht exakt in der Mündungsebene liegen, sondern etwas außerhalb des Rohres. Demnach gilt für die Grundschwingung:

$$\frac{\lambda_0}{4} = l + a \quad \text{bzw.} \quad a = \frac{\lambda_0}{4} - l. \quad (2.4)$$

Die Oberschwingungen ergeben sich wiederum aus den ungeradzahligen Vielfachen der Wellenlänge bzw. Frequenz der Grundschwingung.

2.4.2.2 Beidseitig offene und geschlossene Rohre

Wie im Fall einseitig geschlossener Rohre können sich auch in diesem Fall unendlich viele Eigenschwingungen ausbilden. Jetzt entspricht jedoch der Rohrlänge eine halbe Wellenlänge der Grundschwingung. Die Wellenlängen der Schwingungen höherer Ordnung ergeben sich als ganzzahlige Vielfache der Grundschwingung. Es gilt also

$$f_n = \frac{n}{2l} c_s. \quad (2.5)$$

Beim beidseitig offenen Rohr ist wieder eine Korrektur der Druckknoten zu berücksichtigen. Mit Hilfe der doppelten Mündungsstrecke a ergibt sich somit

$$\frac{\lambda_0}{2} = l + 2a \quad \text{bzw.} \quad a = \frac{1}{2} \left(\frac{\lambda_0}{2} - l \right). \quad (2.6)$$

3. Klanganalyse von Musikinstrumenten

Sprache und Musik stellen ein höchst komplexes Schallphänomen dar und es stellt sich die Frage, wie z.B. das Zusammenspiel eines Orchesters sinnvoll mit physikalischen Methoden erfaßt werden kann. Neben der rein physikalischen Komplexität kommt erschwerend hinzu, daß in hohem Maße auch menschliche Eindrücke und Gefühle unsere Empfindung von Sprache und Musik beeinflussen. Für eine umfassende Untersuchung sind daher auch die folgenden Faktoren von Bedeutung:

- die Partitur und der Komponist,
- die Musikinstrumente und die Musiker,
- die Architektur und die Besetzung des Raumes,
- der Hörvorgang und die Psychologie des Zuhörers.

Obwohl viele nicht-physikalische Faktoren eine wesentliche Rolle spielen, hat die physikalische und technische Forschung auf dem Gebiet der Akustik zu einer Reihe von Erkenntnissen geführt, die in zahlreichen Anwendungen umgesetzt werden konnten:

- Speicherung, Übermittlung und Wiedergabe von Musik und Sprache,
- automatische Spracherkennung und Sprachsynthese,
- elektronische Musikinstrumente,
- Therapie des menschlichen Gehörs (z.B. Entwicklung von Hörgeräten),
- Bauphysik, insbesondere Bau von Konzertsälen etc.
Diese Liste könnte man problemlos fortführen und viele der darin enthaltenen Punkte sind auch heute noch Gegenstand wissenschaftlicher Forschung.

Eine besondere Stärke naturwissenschaftlicher Forschung ist es, den Gegenstand des Interesses soweit zu vereinfachen und zu idealisieren, daß die Grundprinzipien herausgearbeitet werden und ein Modell entwickelt werden kann, das wiederum in der Lage ist Vorhersagen über eine Vielzahl von Aspekten zu treffen. Was also sind die grundlegenden Größen und Vorgänge, die dem so komplizierten Phänomen von Sprache und Musik zugrundeliegen und für deren Charakterisierung hilfreich sein können?

3.1 Das Zeitsignal

Im vorigen Kapitel wurde festgestellt, daß sich Schall wellenartig als fortlaußende Störung der lokalen Dichte von Luft ausbreitet. Für solche Phänomene bietet es sich an, ihren zeitlichen Ablauf zu beschreiben. Musik etwa wird in Form eines Klangs von einem Klangerzeuger, dem Musikinstrument, produziert. Die Luft dient als Transportmedium zum menschlichen Ohr, wo es im wesentlichen empfangen und vom Gehirn empfunden wird. Das Ohr stellt eine wichtige Schnittstelle dar und wird für die weitere Argumentation weiter unten noch eine Rolle spielen. An dieser Stelle sei nur auf die Rolle des Trommelfells verwiesen, das durch die Schallwellen zu einer Bewegung angeregt wird. Das Schlagen des Hammers läßt sich wiederum als zeitlicher Prozeß verfolgen. Ersetzt man in Gedanken die Membran des Trommelfells durch ein Mikrophon, so läßt sich die Bewegung des Hammers direkt in eine Spannung umwandeln, die sich leicht weiter verarbeiten läßt. Dieses Zeitsignal ist eine äquivalente Beschreibung des Schallphänomens: sorgt man dafür, daß z.B. mit technischen Hilfsmitteln wie etwa einem Kopfhörer das Trommelfell dasselbe zeitliche Verhalten erzeugt, so ist unsere Empfindung des Schallereignisses weitestgehend identisch.

Abbildung 3.1: Beispiele für je einen digitalen Sprach- und Musikvektor.

Das Zeitsignal $U(t)$ kann, wie schon angedeutet, auf komplizierte Weise von der Zeit abhängen (vgl. Abb. 3.1). Im Falle eines Tons ist die Situation einfach,
3.2 Die Lautstärke

denn das Signal läßt sich einfach durch eine Sinusfunktion beschreiben. Doch Einzeltöne treten in der Musik wie auch in der Sprache so gut wie nie auf, so daß die üblichen Zeitsignale Klänge oder Geräusche sind. Eine geeignete graphische Darstellung ist in Abb. 3.1 gezeigt. Man nennt diese Ausschnitte Sprach- und Musikvektoren. Zeitsignale sind Funktionen einer Variablen und aufgrund ihrer vielseitigen Anwendbarkeit (Erzeugung, Speicherung, Übertragung, Digitalisierung von Signalen) hat sich eine ganze Teildisziplin der physikalischen Mathematik gebildet: die Signaltheorie.

Im weiteren wird sich zeigen, daß man mit Hilfe des Fourierformalismus komplizierte akustische Zeitsignale aus einfachen Spezialfällen synthetisieren kann. Eine wichtige Rolle spielen dabei die periodischen Signale f, also Signale, die sich jeweils nach einer Periodendauer T wiederholen:

$$f(t) = f(t + T). \quad (3.1)$$

Zwei besonders einfache Beispiele sind die Sinus- und Sägezahnfunktion (Abb. 3.2). Ein sinusförmiges Zeitsignal ist durch die Größen Amplitude A, Frequenz $f (=1/T$ bzw. Kreisfrequenz $\omega = 2\pi f$) und die Phase ϕ definiert:

$$U(t) = A \cdot \sin(\omega t - \phi). \quad (3.2)$$

In Bezug auf die Akustik zeigt sich, daß die Amplitude die Lautstärke, die Frequenz die Tonhöhe und die Signalform die sogenannte Klangfarbe beeinflussen. So klingt ein reiner Sinuston einer bestimmten Frequenz und Amplitude genauso wie ein Sägezahn derselben Parameter.

3.2 Die Lautstärke

Ein akustisches Zeitsignal kann als Luftdruckschwankung $p(t)$ aufgefaßt werden. Bekanntlich ist Druck definiert als Kraft pro Fläche. Betrachtet man
die Energie pro Fläche, die Schallintensität \(J \), so findet man, daß sie proportional zum Quadrat des Effektivwertes \(p_{\text{eff}} \) des Schalldruckes, i.e. der über 0.1...1s gemittelte Druck. Das menschliche Hörvermögen ist sehr empfindlich. Im Durchschnitt sind wir in der Lage Schallintensitäten von \(J_0=10^{-12} \) W/m² noch wahrzunehmen. Gemäß des Weber-Fechnerschen Gesetzes ist das menschliche Hörempfinden logarithmisch. Man definiert daher eine weitere Größe, die diesem Umstand Rechnung trägt. Der Schallpegel \(L \) wird in der Einheit Dezibel (dB) gemessen und ist definiert durch

\[
L = 10 \log \left(\frac{J}{J_0} \right). \tag{3.3}
\]

0 dB definiert die Hörschwelle, während 120 dB die Schmerzgrenze des menschlichen Gehörs darstellt. Zwischen diesen beiden Marken liegen 12 „hörbare“ Größenordnungen! Das menschliche Hörempfinden ändert sich mit dem Alter. Reine Sinustöne können je nach Zustand und Alter des Gehörs zwischen 16 Hz und 20 kHz wahrgenommen werden.

Das menschliche Hörempfinden ist zudem von der spektralen Zusammensetzung des Schalls abhängig. Aufgrund dieses subjektiven Hörempfindens definiert man eine weitere Größe, die diesem Umstand Rechnung trägt - die Lautstärke. Sie wird auf einen subjektiven Vergleich mit einem kalibrierten Bezugs- oder Normschall zurückgeführt. Die Einheit der Lautstärke ist das Phon. Unter der Angabe 80 Phon versteht man beispielsweise einen Schall beliebiger Frequenz, der genau so laut empfunden wird wie ein 1kHz-Sinuston mit einem Schalldruckpegel von 80 dB.

3.3 Tonhöhe, Tonleitern

Für den Klang eines Musikinstrumentes ist die Tonhöhe von Bedeutung. In der Regel ist das Zeitsignal periodisch, zumindest innerhalb einer gewissen Zeit, so daß man aus dem Inversen der Periodendauer \(T \) eine Grundfrequenz \(f_0 \) ableiten kann, die wiederum der empfundenen Tonhöhe proportional ist.

3.4 Klangfarbe

Es wurde mittlerweile mehrfach darauf hingewiesen, daß es sich bei Sprache und Musik um Schallphänomene handelt, die nicht aus jeweils einem einzigen Ton bestehen, sondern vielmehr aus vielen verschiedenen periodischen oder auch nicht-periodischen Schallwellen. Man kann sich Schall als
3.4. Klangfarbe

Es gibt zahlreiche mathematische Verfahren, die man benutzen kann, um eine gegebene Signalfunktion aus Teilfunktionen aufzubauen. Die bekannteste ist sicherlich die Fouriertheorie. Grob gesprochen behauptet das Fouriertheorem, daß jede periodische nicht-sinusförmige Schwingung $U(t)$ als Überlagerung oder Superposition einer im allgemeinen unendlichen Zahl sinusförmiger Teilschwingungen geschrieben werden kann:

$$U(t) = U_0 + \sum_{n=1}^{\infty} a_n \cos(n \omega_0 t) + \sum_{n=1}^{\infty} b_n \sin(n \omega_0 t). \quad (3.4)$$

Dabei entsprechen U_0 der Amplitude der Schwingung; die sogenannten Fourierkoeffizienten a_n und b_n werden weiter unten über die Fourierintegrale definiert. Zu beachten ist, daß in der Fourierreihe nur ganzzahlige Vielfache der Kreisfrequenz ω_0 vorkommen: $n = 1, 2, 3, \ldots$ Man spricht auch von einer Zerlegung in Grundton ($n=1$) und Obertöne ($n=2, 3, \ldots$).

Eine periodische Funktion $U(t)$ wie etwa ein akustisches Zeitsignal läßt sich also gemäß des Fouriertheorems als Summe von Sinus- und Kosinusfunktionen darstellen. Der umgekehrte Fall ist jedoch bei dem Versuch einer Charakterisierung von Sprache und Musik der Fall. Es liegt ein Zeitsignal $U(t)$ vor und man interessiert sich dafür wie man die Amplituden und Fourierkoeffizienten wählen muß, um das Signal in guter Näherung wiedergeben zu können. Genau dies wird durch die Fourieranalyse ermöglicht. Mit Hilfe der Transformationen

$$U_0 = \frac{1}{T} \int_0^T U(t) dt \quad (3.5)$$
$$a_n = \frac{2}{T} \int_0^T U(t) \cos(n \omega_0 t) dt \quad (3.6)$$
$$b_n = \frac{2}{T} \int_0^T U(t) \sin(n \omega_0 t) dt \quad (3.7)$$

3.5 Die Biophysik des Gehörs

3.5.1 Die Cochlea - ein intelligentes Interface

Die Cochlea besteht aus drei mit Flüssigkeit gefüllten Kanälen. Abbildung 3.5 zeigt einen Querschnitt. Der mittlere Kanal (Scala media) enthält Endo-

lymph, die reich an Kaliumionen ist, während die beiden anderen (Scala vestibuli oder S. tympani) mit Perilymph gefüllt sind, eine an Natriumionen reiche Flüssigkeit. Die für die Schallverarbeitung in der Cochlea maßgebende Basilarmembran trennt die Scala media von der Scala tympani. Schallwellen der Luft werden über Außenohr, Trommelfell und Gehörknöchelchenkette in die Cochlea eingekoppelt. Die Steigbügelbewegung ruft Kompressionswellen der Lymph hervor, die ihrerseits die Basilarmembran zum Mitschwingen anregen.

Es gibt zwei Gruppen von Haarzellen:

- eine Reihe von inneren Haarzellen sowie
- drei Reihen äußerer Haarzellen.

Die eigentliche Umsetzung in Nervenimpulse findet in den inneren Haarzellen statt. Sie sind afferent innerviert und übertragen Nervenimpulse zum Gehirn. Die äußeren Haarzellen sind dagegen efferent innerviert und tragen nicht unmittelbar zur Wandlung in neuronale Impulse bei. Sie besitzen neben ihrer passiven sensorischen auch eine aktive mechanische Funktion, die ganz wesentlich die Arbeitsweise des Innenohrs bei niedrigen Schallpegeln beeinflußt. Soviel in aller Knappheit zum komplexen Aufbau des peripheren Hörorgans. Welche biophysikalischen Prinzipien führen nun im Zusammenwirken dieser Teile zu der herausragenden Empfindlichkeit des Gehörs?

3.5.2 Das Innenohr als Resonator

Modelle zur Innenohrfunktion sollten in der Lage sein, die erwähnten Leistungen des Gehörs zu deuten. Historisch lassen sich grob drei Abschnitte der Modellbildung unterscheiden. Ära 1 ist mit dem Namen Helmholtz verknüpft, der als erster eine umfassende Hörtheorie vorschlug, die auf dem Resonanzkonzept basiert. Danach wird die Basilarmembran als ein schwingungsfähiges Gebilde aufgefaßt, dessen einzelne Abschnitte auf unterschiedliche Schwingungsfrequenzen abgestimmt sind. Stimmt die Antriebsfrequenz...
am Steigbügel mit der jeweiligen Eigenfrequenz überein, so schwingt ein begrenzter Abschnitt mit. Auf einem solchen Resonanzeffekt beruht beispielsweise das Mitschwingen der a-Saite eines Klaviers, wenn man genau den Ton „a“ hineinsingt und die Dämpfung der Saiten weggenommen hat.

3.5.3 Das Innenohr als Wellenleiter

Gegen die einfache Resonanztheorie spricht, daß die Basilarmembran nicht aus isoliert schwingenden diskreten Abschnitten besteht, sondern daß auch in Längsrichtung Kopplungskräfte wirken. Ihr Schwingungsverhalten entspricht dem einer schmalen elastischen Platte. Im Zusammenspiel der elastischen Rückstellkräfte der Membran mit der Trägheit der umgebenden mitbewegten Flüssigkeit kommt es zur Wellenausbreitung entlang der Membran. Hier setzt die zweite Ära der Modellbildung an, die mit dem Namen Békésy verknüpft ist. Seine Wanderwellentheorie hat die alte Resonanztheorie abgelöst.

3.5.4 Passive Strukturbildung im Innenohr

3.6 Einteilung der Musikinstrumente

„Vor einer experimentellen Untersuchung der Schwingungseigenschaften ausgewählter Musikinstrumente ist eine systematische Einteilung gängiger Instrumente hinsichtlich ihrer Tonerzeugung angebracht. Betrachtet man zwei unterschiedliche Methoden der Einteilung, so erhält man die in Abb. 3.7 mit einigen Beispielen angegebenen Kategorien. Einerseits wird unterschieden hinsichtlich der Frage, wieviele Töne einem Teilinstrument oder Resonator abgewonnen werden können, andererseits nach der Bauart bzw. der Dimension des tonerzeugenden Bauteils.

3.7 Klanganalyse an Beispielen

Der aktuelle Computermarkt stellt inzwischen sehr preiswerte Möglichkeiten zur Verfügung, Tonaufnahmen und Berechnungen von Frequenzspektren schnell per Mausklick durchführen zu lassen, damit das hauptsächliche Augenmerk auf die Interpretation gerichtet werden kann. Die bekannten Hersteller von Physikunterrichtsgeräten bieten ausgereifte Systeme zur Meßwertaufaufnahme. Für akustische Schülerexperimente leistet bereits ein PC mit Soundkarte, Mikrofon und einer Soundbearbeitungssoftware gute Dienste.

Mit Hilfe dieser für den Unterricht leicht verfügbaren technischen Hilfsmittel sollen verschiedene Klangquellen untersucht werden, um Musik- und Physik-
Abbildung 3.7: Einteilung der Musikinstrumente

schülern zu vermitteln, wie der charakteristische Klang eines Musikinstru-
m ents zustandekommt. Es soll auch anhand eines gesanglichen Beispiels ver-
deutlicht werden, daß - anders als bei einem Meßinstrument- die biologischen
Vorgänge des Hörens eine große Rolle bei der Musikwahrnehmung spielen. So
ist bereits seit langem bekannt, daß nicht nur das Frequenzspektrum eines
Tons ausschlaggebend für die Wahrnehmung ist, sondern dass sogenannte
Kombinationsfrequenzen (Differenzfrequenzen) und erst im Ohr entstandene
Oberschwingungen ebenfalls wahrgenommen werden.

3.7.1 Die Flöte

Anhand der Blockflöte, die bei einem Großteil der Schülerinnen und Schü-
er als vorhanden vorausgesetzt werden darf, läßt sich mit den technischen
Möglichkeiten eines PC mit Soundkarte und Mikrofon leicht veranschauli-
chen, was den typischen Klang eines Instruments ausmacht. Zum einen ist
dies die Form des zeitlichen Verlaufs der erzeugten Schallschwingung, zum
anderen aber auch ganz wesentlich der Einschwingvorgang. Abbildung 3.8(a)
zeigt die ersten 60 ms des Tons g"; also des „normalen“ g auf einer Sopran-
blockflöte (Griffweise entspricht g"-die Sopranblockflöte erklingt eine Okta-
ve höher als ihre Notation). Zur Verdeutlichung wurde der Ton mit etwas
überhöhtem Druck angeblasen, woraus die große Amplitude in der Mitte des
Bildes resultiert. Man erkennt deutlich, daß während des gezeigten Zeitin-
tervalls eine Schwingung dominiert, die die doppelte Frequenz des Tons be-
sitzt, der sich nach diesem Einschwingvorgang stabilisiert. Die Bedeutung
des Einschwingens, das in dieser Weise auch bei anderen Blasinstrumenten
bis hin zur Pfeifenorgel auftritt, zeigt sich auch in einer frequenzaufgelösten
Darstellung (Abbildung 3.8(b)). Während der ersten Millisekunden (schwarze
3.7. Klanganalyse an Beispielen

(a) Zeitbereich.

Abbildung 3.8: Klangspektrum einer Flöte.

Kurve) dominiert der Anteil mit der doppelten Frequenz des Grundtons (ca. 1500Hz), während im weiteren Verlauf der Grundton mit etwa 750Hz dominiert und der doppelte Frequenzanteil als erste Oberschwingung zur Klanggebung des Instruments beiträgt. Die Blockflöte ist des weiteren auch ein gutes, leicht verfügbares Beispiel für folgendes Phänomen aus der Wellenlehre des Schulunterrichts: Oft wird der Unterschied zwischen offener und gedackter Orgelpfeife behandelt. Aufgrund der symmetrischen Randbedingungen stellen sich in der offenen Pfeife solche stehenden Wellen ein, die ebenfalls symmetrischen Druckverlauf haben, d.h. die Grundschwingung ist diejenige mit der Wellenlänge \(\lambda = 2L \) (\(L \) = Pfeifenlänge). Dagegen ertönt die geschlossene Pfeife in einer Grundschwingung mit \(l = 4L \), der Ton ist also um eine Octave niedriger. Auch dies lässt sich gut mit der Blockflöte verdeutlichen: Wir benutzen lediglich den abgenommenen Flöttenkopf und blasen ihn einmal offen an und einmal geschlossen, indem wir die Unterseite mit der Handfläche bedecken. Oft vernachlässigt wird allerdings der klangliche Unterschied zwi-
Abbildung 3.9: Einseitig offene und beidseitig offene Flöte.

schen offenen und gedackten Pfeifen, der daraus resultiert, dass aufgrund der Randbedingungen nur solche Wellen in die Pfeife passen, für die gilt:

\[L = \lambda/4, 3\lambda/4, 5\lambda/4, \ldots \]

D.h. im Obertonspektrum treten ausschließlich ungradzahlige Vielfache des Grundtons auf, jede zweite Oberschwingung fehlt. Lässt sich dieses auch anhand der Blockflöte verdeutlichen?

Wir führen folgendes Experiment durch: Wir erzeugen zum einen einen Ton mit dem zugehaltenen Flötenkopf und zum anderen greifen wir auf einer kompletten Flöte einen Ton, der - je nach Modell - im Bereich f-fis-g liegen sollte. Es läßt sich so erreichen, daß beide Töne gleiche Höhe haben, doch der klangliche Unterschied ist deutlich. Die entsprechenden Fourier-Spektren sind in Abbildung 3.9 dargestellt. Darin fällt auf, daß in der Frequenzanalyse für den geschlossenen Flötenkopf (weiß) bei einer Frequenz von 3750 Hz der Anteil fehlt, der der fünffachen Frequenz der Grundschwingung entspricht, also ein ungerader Anteil und nicht etwa sämtliche geraden Vielfachen. Anhand dieses Experiments lässt sich also zweierlei festhalten

- Unterschiede im Obertonspektrum lassen sich in der Tat deutlich hören
- Durch die Optimierung hinsichtlich des Klanges als Blockflöte ist der geschlossene Instrumentenkopf überraschenderweise nur bedingt als Modell für die gedackte Orgelpfeife zu gebrauchen.

Nebenbei bemerkt ist speziell der Griff für das fis (mittleres Loch offen) auch nur eine mäßige Näherung für eine ausschließlich am Ende offene Pfeife, zumal gerade offene Mittellöcher ein weiteres komplexes Problem darstellen.

3.7.2 Die Gitarre

Wie äußert sich aus dem Blickwinkel der Meßtechnik eigentlich der klangliche Unterschied zwischen einem Blasinstrument wie der Flöte und einem Saiteinstrument wie der Gitarre? Speziell Saiteninstrumente - angefangen mit
3.7. Klanganalyse an Beispielen

Bei der Frequenzmessung beider Instrumente überrascht zunächst folgendes: Die Gitarre erklingt als Instrument in Tenorlage eine Oktave tiefer als ihre Notation. Zwischen ihr und der Sopranblockflöte liegt also effektiv ein Intervall von zwei Oktaven. Soll die gleiche Frequenz erreicht werden wie beispielsweise beim g'' der Flöte (gegriffen g'), so muss der Gitarrist ein g''' greifen (e-Saite 15(1)ter Bund). Abbildung 3.10(a) zeigt einen 9 Millisekunden kurzen Ausschnitt aus den Schwingungsverläufen beider Instrumente bei dem beschriebenen Ton g'''. Die Fourierspektren sind in Abbildung 3.10(b) gezeigt. Hieraus lernen wir folgendes: Das Klangspektrum der Gitarre ist deutlich klarer beschränkt auf Oberschwingungen, also ganzzahlige Vielfache der Frequenz des Grundtons. Der Klang der Flöte weist darüber hinaus noch - insbesondere im höheren Frequenzbereich - Vielfache der halben Frequenz des Grundtons auf. Darüber hinaus erkennt man noch anharmonische und niederfrequente Anteile, die z.B. aus Turbulenzen oder Druckschwankungen beim Anblasen herrühren können und die dazu führen, daß sich die Schwin-
Abbildung 3.11: Einseitig offene und beidseitig offene Flöte.

gungsform bereits innerhalb weniger Zyklen ändert (s. Markierungen in Abbildung 3.10(a) oben).

3.7.3 Die Stimme

3.8 Das Programm overtone

Die in diesem Kapitel beschriebenen Experimente können sehr einfach mit Schulmittel selbst durchgeführt werden. Mittlerweile befindet sich in jedem
3.8. Das Programm overtone

Abbildung 3.12: Der Startbildschirm von overtone.

Abbildung 3.14: Klanganalyse einer externen .wav-Datei.
4. Selbstbau eines Radios

In diesem Kapitel wird eine Bauanleitung für einen Radioempfänger und -sender vorgestellt, die mit der Ausstattung einer Physiksammlung, wie sie an vielen Schulen zu finden ist, realisiert werden kann. Es besteht jedoch auch die Möglichkeit auf Wunsch einen äquivalenten Aufbau bei einem Besuch an der Technischen Fakultät (Lehrstuhl für Hochfrequenztechnik) aufzubauen.

Der folgende Text *Radiosender Radioempfänger* wurde von A. Reichert verfaßt (http://home.t-online.de/home/Alfons.Reichert/radiost.htm).

4.1 Einleitung

Im zweiten Teil werden die Vorgänge untersucht, die sich beim Empfang der Signale im Radio abspielen. Dabei wird zunächst gezeigt, dass der selbstgebaute Sender in einem käuichen Radio empfangen werden kann. Danach wird anhand mehrerer Versuche erklärt, wie im Empfangskreis bei AM bzw. FM das NF-Signal zurückgewonnen, also demoduliert wird.

Im letzten Kapitel kommen ein paar Aspekte zum Thema Antenne zur Sprache. Sie stellt ein wichtiges Bindeglied zwischen Sender und Empfänger dar.

Ich wünsche allen Kolleginnen und Kollegen viel Erfolg bei ihrem oft schwierigen Unterfangen, die Schüler für das als schwer geltende Fach Physik zu motivieren.

4.2 Radiosender

4.2.1 Schaltplan des Senders

Die in Abb. 4.1 dargestellte Schaltung stellt einen ungedämpften Oszillator dar, der als Radiosender im KW-Bereich eingesetzt werden kann. Er lässt sich frequenz- und amplitudenmodulieren. Beide Vorgänge lassen sich außerdem auf einem Oszillographen sichtbar machen. Dadurch werden sie für die Schüler wesentlich einsichtiger. Da die Schaltung außerdem recht übersichtlich aufgebaut ist, können die Schüler auch seine Funktionsweise nachvollziehen. Verwendet man zusätzlich noch einen einfachen Empfangskreis, so lassen sich mit dem Oszillator auch eine ganze Reihe interessanter Untersuchungen über Radioempfänger anstellen (s. Kapitel 4.3).

4.2.2 Funktion der Schaltung

4.2.3 Betriebsdaten der Schaltung

Die Betriebsspannung der Schaltung kann zwischen 2 und 5 V liegen, optimal sind 3 V. Sie muss stabilisiert sein. Die Niederfrequenzquelle kann ein Tonfrequenzgenerator oder ein Dreieckgenerator sein. Sie müssen jedoch Frequenzen im Bereich von 1-20 Hz mit einer Spannung bis 10 V erzeugen können. Nur dann lassen sich die Vorgänge bei beiden Modulationsarten deutlich sichtbar machen. Der Oszillator schwingt bei den angegebenen Werten mit ca. 12 MHz. Daher wählt man am Oszillographen für die Zeitachse 0,5 ms/cm x 3 oder falls möglich 0,1 ms/cm und für die Spannungsachse je nach Betriebsspannung 2 V/cm oder 5 V/cm.

4.2.4 Aufbau der Schaltung

Die Schaltung kann man sich aus Einzelbauteilen eines Elektronikkastens zusammenstecken. Als Spule eignet sich dann die wohl in jeder Sammlung vorhandene KW-Spule von Phywe mit 10 Windungen, die man zusätzlich an der 3. Windung abgreift. Für den Einsatz im Unterricht besser geeignet ist auf jeden Fall eine verlötbte Version, da sie sich im fertigen Zustand mit ein paar Handgriffen in Betrieb nehmen lässt. Man muss sich dann nur einmal die Mühe machen, die Schaltung zusammenzubauen. Da nicht jeder die Möglichkeit hat, eine passende Platine herzustellen, benutzt man am einfachsten eine fertige Lochrasterplatine mit Löfstreifen der Größe 5x9 cm. Die Abbildung 4.2 zeigt die Verdrahtung auf einer solchen Platine. Dann muss man sich jedoch die benötigte Spule selbst wickeln. Dazu klebt man sich zunächst ein Papierröllchen von 3 cm Durchmesser und 5 cm Länge. Eine leere Filmdose leistet
4.2.5 Tabelle der benötigten Bauteile

- 1 Lochrasterplatine 5x9 cm, mit Lötstreifen, RM 2,54 mm
- 2 Holzleisten 2x2 cm, Länge je 7 cm
- 1 Ferrero Rocher-Dose
- 1 gelbe Buchse, vollisoliert, 4 mm
- 1 grüne Buchse, vollisoliert, 4 mm
- 1 rote Buchse, vollisoliert, 4 mm
- 1 schwarze Buchse, vollisoliert, 4 mm
- 1 Miniatur-Kippschalter 1 x UM
- 1 Kapazitätsdiode BB 204 grün/blau oder BB 203 grün/blau
- 1 Kondensator 47 pF
- 1 Kondensator 22 pF
- 1 Kondensator 1 nF
- 1 Kondensator 100 nF
- 1 Kondensator 100 mF/35 V
- 2 Widerstände 1 kΩ, 0,25 W
- 2 Widerstände 22 kΩ, 0,25 W
- 1 Widerstand 100 kΩ, 0,25 W
- 1 Transistor 2N1613
- 4 Holzschrauben, ∅ 2 mm, Lange: 11 mm
- 2,5 m Kupferlackdraht, ∅ 0,5 mm
- etwas Schaltlitze
- etwas Patex, Klebeband und festes Papier

4.2.6 Zusätzliche Anmerkungen zur Schaltung

4.3 Radioempfänger

4.3.1 Empfang des Senders mit einem Weltempfänger

Versuch: Stellt man ca. 5m vom KW-Sender entfernt einen Weltempfänger auf, so kann man im KW-Bereich den eigenen Sender empfangen. Als NF-Quelle kann man dazu am NF-Eingang des Senders den Ohrhörerausgang eines Kassettenrekorders oder Walkmans, ein Mikrofon mit Verstärker oder aber den Sinusausgang eines Tonfrequenzgenerators anschließen. Dabei muss man die Spannung der NF-Quelle auf ca. 1V begrenzen, da sonst erhebliche Verzerrungen auftreten. Der Sender kann sowohl mit Amplituden- als auch mit Frequenzmodulation betrieben werden. Bei Frequenzmodulation muss man den Empfänger nur etwas gegen den Sender verstimmen (s. Kapitel 4.3.3). Der Empfang lässt sich noch etwas verbessern, wenn man in den Oszillographenausgang des Senders ein ca. 9m langes Kabel als Antenne steckt (vgl. Kapitel 4.4.2).

4.3.2 Empfang bei Amplitudenmodulation

Versuch 1: Zur genauen Untersuchung der Vorgänge bei Frequenz- und Amplitudenmodulation benutzt man den Empfangskreis aus Abb.4.3. Er lässt sich am einfachsten aus Bauteilen eines Elektronikkastens zusammenstecken. Als Induktivität dient dabei die KW-Spule der Fa. Phywe (Windungszahl \(n = 3 \); Länge \(l = 4 \) cm; Durchmesser \(d = 10 \) cm). Der Drehkondensator ist
4.3. Radioempfänger

Abbildung 4.3: Empfangskreis.

(a) HF-Signal
(b) NF-Signal

Abbildung 4.4: Anzeige eines Zweikanaloszilloskops.

Diesen Empfangskreis stellt man in einer Entfernung von 20-30 cm neben dem Sender auf. Der Sender steht dabei auf Amplitudenmodulation und der Empfangskreis auf optimalem Empfang.

Der Zweikanaloszillograph zeigt dann Bilder wie in Abb. 4.4(a) und 4.4(b), wenn man in den Sender einen Sinuston einspeist. An Kanal 1 liegt offensichtlich das gesendete amplitudenmodulierte Signal an, aus dem mit Hilfe der restlichen Bauteile das NF-Signal an Kanal 2 zurückgewonnen wird. Wie das vor sich geht, zeigt der nächste Versuch.

Versuch 2: Man entfernt aus dem Empfangskreis nach Abb. 4.4(a) den Kondensator $C = 1 \, \text{nF}$. Dann erhält man am 2. Kanal des Oszillographen die folgende Abb. 4.5. Diese Kurve lässt sich wie folgt erklären. Die Diode schneidet den unteren Teil der HF ab. Das ist notwendig, damit die positiven und negativen Anteile der HF sich nicht gegenseitig aufheben und somit die empfangene mittlere Leistung Null ist. Da der Kondensator fehlt, kann der Rest der HF nicht mehr zur Erde abgeleitet werden. Um diese Aussage zu verdeutlichen,
kann man eine kleine Rechnung anstellen. Für eine Frequenz \(f = 12 \text{ MHz} \) hat das RC-Glied einen Widerstand von

\[
Z = \frac{1}{\sqrt{1/R_2 + 1/RC_2}} = 13,3\, \Omega.
\] (4.1)

Für \(f = 1 \text{ kHz} \) findet man: \(Z = 157,3 \, \text{k}\Omega \).

Die Hochfrequenz wird durch das RC-Glied praktisch kurzgeschlossen, während sich die Niederfrequenz als Spannung am RC-Glied aufbaut. Sie kann direkt einem NF-Verstärker zugeführt werden.

Versuch 3: Man entfernt in Abb. 4.3 den Oszillographen und schließt am RC-Glied einen NF-Verstärker an, der mit einem Lautsprecher verbunden ist. Im Lautsprecher hört man bei genauer Abstimmung des Empfangskreises den im Sender eingespeisten Sinuston. Alternativ kann man an den NF-Eingang des Senders auch einen Walkman oder einen Kassettenrekorder anschließen. Dann ertönt im Lautsprecher Musik. Schiebt man zwischen Sender und Empfänger eine Metallplatte, so verstummt der Lautsprecher.

4.3.3 Empfang bei Frequenzmodulation

Versuch 1: Man schließt den NF-Eingang des Senders an den Tonfrequenzgenerator mit sinusförmiger Wechselspannung an. Den Empfangskreis vereinfacht man gemäß Abb. 4.6 und stellt ihn auf optimalen Empfang ein. Dann

![Abbildung 4.6: Einfacher Empfangskreis.](image)

schaltet man den Sender auf Frequenzmodulation FM um. Auf dem Oszillographen erscheint nach kurzer Zeit das Bild in Abb. 4.7.
4.3 Radioempfänger

Auf den ersten Blick scheint es so, als hätte sich die Frequenz der NF gegenüber Abb. 4.4(a) verdoppelt. Aber der wirkliche Grund geht aus Abb. 4.8 hervor. Da der Empfänger auf optimalen Empfang eingestellt ist, stimmen die Grundfrequenz f_0 des Senders und des Empfängers vollkommen überein. Daher schwankt die Hochfrequenz im Takte der Niederfrequenz um die Resonanzfrequenz f_0 des Empfangsschwingkreises. Ist die Spannung der Niederfrequenz negativ, so liegt die Frequenz f_1 der gesendeten Hochfrequenz etwas unterhalb von f_0. Im Empfangskreis ist daher die empfangene Spannung U_1 etwas tiefer als die Spannung U_0 im Resonanzmaximum.

Ähnliches gilt, wenn die Spannung der Niederfrequenz positiv ist. Dann ist zwar die Frequenz f_2 der Hochfrequenz etwas höher als die Resonanzfrequenz f_0. Da aber die empfangene Frequenz f_2 auf dem absteigenden Ast der Resonanzkurve liegt, ist die empfangene Spannung U_2 tiefer als im Resonanzmaximum. Das frequenzmodulierte Signal des Senders wird im Empfänger in ein amplitudenmoduliertes Signal umgewandelt, wobei allerdings die Form verzerrt wird. Speist man in den Sender ein Rechtecksignal ein, so scheint die
Niederfrequenz gemäß Abb. 4.9(a) sogar völlig verschwunden zu sein. Denn nun entsteht für beide Hälften des Rechtecksignals im Empfangskreis für alle Zeiten die gleiche Spannung \(U_1 \) bzw. \(U_2 \). Die Form des gesendeten Signals geht dabei völlig unter. Wie kann man dann aber bei Frequenzmodulation das exakte NF-Signal im Empfangskreis wieder gewinnen? Das zeigt der folgende Versuch.

Versuch 2: Man verstimmt den Empfangskreis aus dem vorigen Versuch etwas, indem man am Drehkondensator einen leicht veränderten Wert einstellt. Für ein NF-Sinussignal ergibt sich dann das Bild einer amplitudenmodulierten sinusförmigen HF gemäß Abb. 4.4(a). Wurde der Sender mit einer Rechteckspannung frequenzmoduliert, so findet man die Kurve in Abb. 4.9(b). Hier baut sich im Empfangskreis ein amplitudenmoduliertes rechteckförmiges HF-Signal auf.

Erklärung: (s. Abb. 4.10) Da die Sendefrequenz \(f_0 \) und die Resonanzfrequenz des Empfangskreises nicht mehr übereinstimmen, liefert die Trägerfrequenz \(f_0 \) am Empfangskreis eine Spannung \(U_0 \), die kleiner als die Resonanzspannung ist. Je nach Verstimmung des Empfangskreises liegt sie auf dem ab- oder aufsteigenden Ast der Resonanzkurve. Frequenzen \(f_2 \), die höher als \(f_0 \) sind und daher einer positiven NF-Spannung entsprechen, liefern im Empfangskreis somit auch eine höhere Spannung \(U_2 \) als die Frequenz \(f_0 \). Frequenzen \(f_1 \), die kleiner als \(f_0 \) sind und daher von einer negativen NF-Spannung herrühren, ergeben nun in der Tat kleinere Spannungen \(U_1 \) im Empfangskreis als die Trägerfrequenz \(f_0 \). Die Form der NF-Spannung wird also im Schwingkreis des Empfängers korrekt in einem amplitudenmodulierten Trägersignal wiedergewonnen. Es muss anschließend nur noch wie bei der Amplitudenmodulation demoduliert und verstärkt werden.

Von der Methode, frequenzmodulierte Signale durch Verstimmung des Empfangskreises zu demodulieren, wird in modernen Radios nicht mehr Gebrauch gemacht, da sie sehr störanfällig ist. Vielmehr enthalten sie im Empfangs-

4.4 Antenne

4.4.1 Antenne für Schallwellen

Versuch 1: Man schließt an einen Tonfrequenzgenerator einen Lautsprecher an. Den Generator stellt man auf eine Frequenz $f = 378$ Hz und eine geringe Lautstärke ein. Dann hält man vor den Lautsprecher eine beidseitig offene Glasröhre der Länge $l = 0,45$ m.

Beobachtung: Mit Glasröhre klingt der Ton wesentlich lauter als ohne Glasröhre.

Erklärung: In der Glasröhre baut sich durch wiederholte Reflexion der Schallwelle an den Enden der Glasröhre eine stehende Welle auf, die den abgestrahlten Ton durch Resonanz verstärkt.

Versuch 2: Man verstellt den Tonfrequenzgenerator aus Versuch 1 etwas, etwa auf die Frequenz $f = 450$ Hz.

Beobachtung: Die verstärkende Wirkung der Glasröhre ist verschwunden.

Erklärung: In der Glasröhre kann sich keine stehende Welle mehr ausbilden, da die Grundbedingung $l = \lambda/2$ nicht mehr erfüllt ist, wobei für λ gilt:

$$\lambda = \frac{c}{f} \tag{4.2}$$

mit c als Ausbreitungsgeschwindigkeit und f als Frequenz. Setzt man $c = 340$ m/s und $f = 450$ Hz ein, so erhält man letztendlich für die erforderliche Länge
38 4. Selbstbau eines Radios

Es wurde eine Röhre von 37,8 cm verwendet. Die verwendete Röhre ist also zu lang. Für \(f = 378 \text{ Hz} \) errechnet man \(l = 45 \text{ cm} \). Das entspricht genau der Länge der Röhre in Versuch 1.

Versuch 3: Man ersetzt die Glasröhre in Versuch 1 durch eine halb so lange einseitig geschlossene Röhre. Alternativ kann man die Röhre aus Versuch 1 auch mit einer Glasplatte an einer Seite verschließen. Dann muss man jedoch die Frequenz des Generators auf \(f = 189 \text{ Hz} \) reduzieren.

Beobachtung: Auch in diesem Falle erhöht die Glasröhre die Lautstärke des abgestrahlten Tones.

Erklärung: In der Glasröhre kann sich auch diesmal eine stehende Welle ausbilden, wobei jetzt die Resonanzbedingung \(l = \lambda/4 \) lautet. Am geschlossenen Ende haben sich nämlich die Reflexionsbedingungen für die Schallwellen geändert.

Versuch 4: Man hält nach Versuch 1 die Glasröhre nicht an den Lautsprecher, sondern in die Nähe eines Ohres.

Beobachtung: Die Glasröhre lässt den Ton auch dieses Mal lauter erklingen.

Erklärung: Die in das Glasrohr eindringenden Schallwellen erzeugen in der Luft der Röhre eine stehende Welle, die den Ton durch Resonanz verstärkt. Der Abstand zur Schallquelle spielt dabei keine Rolle.

4.4.2 Antennen für elektromagnetische Wellen

Aus den Versuchen in Kapitel 4.4.1 kann man folgern, dass eine Antenne für Wellen aus einem Stück Wellenleiter passender Länge besteht. Damit sich eine stehende Welle ausbilden und damit die Welle durch Resonanz verstärkt werden kann, muss für die benötigte Länge \(l \) gelten: \(l = \lambda/2 \) bzw. \(l = \lambda/4 \), je nachdem, wie das eine Ende des Leiters beschaffen ist. Ferner können Antennen offenbar am Sender und oder am Empfänger eingesetzt werden. Leiter für EM-Wellen sind Metallstäbe. Damit besteht die einfachste Antenne für EM-Wellen aus einem Stück Metalldraht der oben angegebenen Länge. Da für EM-Wellen \(c = 3 \cdot 10^8 \text{ m/s} \) ist, errechnet sich die erforderliche Länge \(l \) für die verschiedenen Frequenzbereiche der Radiosender unter Beachtung der Gleichung 4.2 wie folgt:

- **LW-Bereich:** \(l = \lambda/2 = 3 \cdot 10^8 \text{ ms}^{-1}/(2 \cdot 250 \text{ kHz}) = 600 \text{ m} \) bzw. \(l = \lambda/4 = 300 \text{ m} \)
- **MW-Bereich:** \(l = \lambda/2 = 3 \cdot 10^8 \text{ ms}^{-1}/(2 \cdot 1 \text{ MHz}) = 150 \text{ m} \) bzw. \(l = \lambda/4 = 75 \text{ m} \)
- **KW-Bereich:** \(l = \lambda/2 = 3 \cdot 10^8 \text{ ms}^{-1}/(2 \cdot 10 \text{ MHz}) = 15 \text{ m} \) bzw. \(l = \lambda/4 = 7,5 \text{ m} \)
- **UKW-Bereich:** \(l = \lambda/2 = 3 \cdot 10^8 \text{ ms}^{-1}/(2 \cdot 100 \text{ MHz}) = 1,5 \text{ m} \) bzw. \(l = \lambda/4 = 0,75 \text{ m} \)

Darin wurden für die Frequenzen in etwa die mittleren Werte der einzelnen Sendebereiche eingesetzt. Soll die Antenne als \(\lambda/4 \)-Dipol ausgeführt werden, so muss das eine Ende mit einem festen Bezugspotential, etwa der Erde verbunden werden.

Offensichtlich sind solche einfachen Drahtantennen nur für den UKW-Bereich praktikabel. In allen anderen Fällen sind die benötigten Drahtlängen viel zu groß. Im UKW-Bereich werden in Transistorradios in der Tat Teleskopanten, also ausziehbare Metallstäbe der berechneten Länge \(l \approx 0,75 \text{ m} \) als Antennen verwendet. Bei feststehenden UKW-Empfängern setzt man häufig Metallbänder der Länge \(l = 1,5 \text{ m} \) ein, die in der Mitte abgegriffen werden. Für
die anderen Bereiche werden statt der einfachen Drahtantennen sogenannte Ferritantennen in die Radios eingebaut. In ihnen ist wegen $\mu_r \gg 1$ λ sehr viel kleiner und damit auch die benötigte Stablänge. Für λ gilt dann nämlich

$$\lambda = \frac{c'}{f} = \frac{c}{\mu_r f},$$

(4.3)

da nach Maxwell in diesem Falle

$$c' = \frac{c}{\mu_r}$$

(4.4)

ist."
4. Selbstbau eines Radios
5. Digitale Signalübertragung

5.1 Digitalisierung und Eigenschaften von Sprache und Musik

5.1.1 Einleitung

\[s(t) \]

Abbildung 5.1: Beispiele analoger und digitaler Signale und Systeme.
an Problemstellungen und ist unempfindlich gegenüber Fertigungstoleran-
zen, Temperaturschwankungen und Alterung von Bauteilen. Im Gegensatz
to analogen Systemen ist mit digitalen Daten eine verlustfreie Übertragung
auch über lange Distanzen hinweg möglich. Aus diesem Grunde arbeiten heu-
tige Geräte und Anlagen wie CD-Abspielgeräte oder Mobiltelefone bis hin zu
ganzen Radiosendern mit digitalen Daten.

Wann wird nun ein Signal oder System als „analog“ und wann als „digital“
bezeichnet?

Analoge Signale zeichnen sich dadurch aus, daß sie sich kontinuierlich verän-
dern, beispielsweise mit der Zeit und/oder dem Ort. Eine Schallwelle, die von
einem Lautsprecher abgestrahlt wird, breitet sich kontinuierlich durch den
Raum aus und verändert sich kontinuierlich mit der Zeit. Diese Schallwelle
stellt also ein analoges Signal dar. Ein **analoges System** verarbeitet analoge
Signale unter Beibehaltung des kontinuierlichen Charakters des Signals. Im
Beispiel der Schallwelle aus einem Lautsprecher könnte dies eine Lichtorgel
sein, die die Schallwellen entsprechend ihres Schaldruckes in Lichtstärke
umsetzt.

Digitale Signale hingegen bestehen aus Ziffernfolgen, die analoge Signale re-
präsentieren können. Oder anders ausgedrückt, es läßt sich aus jedem ana-
logen Signal eine Ziffernfolge und damit ein digitales Signal erzeugen, das in
der Lage ist, das analoge Signal (zumindest in bestimmten Grenzen) zu be-
schreiben. Diese Ziffern werden üblicherweise im binären Zahlenformat, d.h.
as **Bits** oder Nullen und Einsen dargestellt. Ein **digitales System** verarbeitet
diese digitalen Signale unter Verwendung von beispielsweise Mikroprozesso-
ren, Speichern und Software.

Da unsere Umwelt zunächst als „analog“ zu bezeichnen wäre, muss vor einer
digitalen Verarbeitung von Signalen zunächst eine Analog-Digital-Umsetzung
oder **Digitalisierung** erfolgen, wie sie im folgenden Kapitel beschrieben wird.

5.1.2 Digitalisierung

Bevor eine Digitalisierung von analogen Signalen, wie z.B. Schallwellen an-
gerlegt durch Sprache oder Musik, erfolgen kann, müssen diese Signale dem
verarbeitenden digitalen System, also z.B. dem Computer, zugänglich gemacht
werden: Schallwellen werden dazu in einem Mikrofon in elektrische – aber
immer noch analoge – Schwingungen umgewandelt. Diese elektrischen Schwin-
gungen, die der Schalldruckwelle proportional sind, werden einem Baustein
des Computers zugeführt, der als **Analog-Digital-Wandler** bezeichnet wird
und die Digitalisierung der (nun elektrischen) Schwingung durchführt, d.h.
die elektrischen Schwingungen werden in eine dem Computer verständliche
Darstellungsform aus Binärzahlen umgewandelt. Die meisten handelsübli-
chen Soundkarten beispielsweise haben einen solchen AD-Wandler.

Der Vorgang der Digitalisierung ist in Abb.5.3 schematisch dargestellt. Aus
dem analogen Signal (kontinuierliche Schwingung) werden in gleichen Ab-
ständen (dargestellt durch **senkrechte** Linien) Proben entnommen, die als sch-
warze Punkte gekennzeichnet sind. Jeder dieser sogenannten **Abtastwerte**
will nun dem Intervall, gebildet durch die **waagerechte** Linien, zugeordnet,
in das der Abtastwert hineinfeld. Der AD-Wandler übermittelt dem Compu-
ter die Nummer des Intervalls, in dem der aktuelle Abtastwert des analogen
Signals liegt, und zwar in binärer Form, d.h. durch Bits, die die Werte Null oder Eins annehmen können. Ein Beispiel: der dritte Abtastwert von links fällt in das Intervall 89 (abzulesen an der rechten Seite des Diagramms). Diese Intervallnummer wird in die Binärzahl 01011001 umgewandelt, da

Abbildung 5.2: Der Weg von Sprache und Musik in den Computer.

Abbildung 5.3: Digitalisierung. Umwandlung eines analogen, kontinuierlichen Signals in eine Folge von Binärzahlen.
Es wird deutlich, dass durch diese Digitalisierung Informationen verloren gehen. Beispielsweise wird für die Abtastwerte 6 bis 8 (von links gezählt) die gleiche Intervallnummer 86 übermittelt wird, obgleich die analogen Werte zwar in dieses Intervall fallen, aber nicht gleich sind. Darüberhinaus geht natürlich auch die Information zwischen zwei Abtastpunkten (in Zeitrichtung betrachtet) verloren, d.h. aus zwei Signalproben kann nicht eindeutig geschlossen werden, ob das Signal dazwischen „relativ gerade verläuft“ oder aber große Schwingungen ausführt. Folglich kann das analoge Signal umso besser wiedergegeben werden, je feiner das Raster aus waagerechten und senkrechten Linien gewählt wird. Die Häufigkeit mit der regelmäßig Proben aus dem Signal entnommen werden, wird als Abtastfrequenz bezeichnet. Die Anzahl der Intervalle wird als Quantisierung mit x Bit pro Abtastwert bezeichnet. Eine 16 Bit-Soundkarte quantisiert also mit 16 Bit pro Abtastwert, einer Einteilung in \(2^{16} = 65536 \) verschiedenen Intervallen entsprechend. Der Einfluss der Abtastfrequenz und der Bits pro Abtastwert (also der Feinheit des Digitalisierungsvektors) auf die digitale Sprach- und Musikqualität wird uns später beschäftigen.

5.1.3 Fragen/Aufgaben

5.1.3.1 Warum können Computer nicht mit analogen Signalen arbeiten?
5.1.3.2 Ordnet den einzelnen Worten des Satzes unten die entsprechenden Abschnitte im Sprachsignal zu.

Sprachvektor: Die Natur hat dem Menschen...

5.1.3.3 Schaut Euch das obige Sprachsignal an und überlegt Euch, warum es für den Computer schwierig sein könnte, menschliche Sprache zu verstehen!

5.1.3.4 In dem unteren Signal sind sechs Instrumente nacheinander zu sehen. Hört Euch die Instrumente an und schreibt ihre Namen unter die zugehörigen Signalabschnitte!

5.1.4 Ergebnisse

- Sprache und Musik zeigen deutliche Unterschiede in ihrer zeitlichen Struktur: Im Gegensatz zur Musik, die eine über den dargestellten Zeitabschnitt vergleichsweise konstante und regelmäßige Struktur aufweist, ist der Sprachabschnitt gleicher Dauer durch sich abwechselnde Abschnitte mit hoher Energie (großer Amplituden) und niedriger Energie (sowie Pausen) gekennzeichnet. Dadurch lässt sich eine Zuordnung zwischen den Signalabschnitten einseits und den entsprechenden Lauten der sprachlichen Äußerung anderseits finden.
Abbildung 5.4: Beispiele für je einen digitalen Sprach- und Musikvektor.

- Sprache lässt sich in zwei Kategorien unterteilen:

 - in **stimmhafte Abschnitte**, die sich durch hohe Energie und eine regelmäßige, periodische Schwingung tiefer Frequenzen auszeichnen und

 - in **stimmlose Abschnitte**, die durch niedrigere Energie und eine hochfrequente und unregelmäßige („rauschartige“) Struktur gekennzeichnet sind.

Stimmhafte Laute werden durch Schwingungen der Stimmbänder erzeugt, stimmlose Laute durch kurzzeitige Verschlüsse oder Luftverwirbelungen im Mund- und Rachenraum. Vokale (wie „a“, „o“, „u“) sind rein stimmhaft, Konsonanten dagegen stimmlos („sch“, „t“, „k“) oder gemischt stimmhaft/stimmlos („m“, „d“, „g“).

Abbildung 5.5: Ausschnitte aus dem Musiksignal einer Geige und eines Beckens.
5.2 Spektren von Sprache und Musik

5.2.1 Einleitung

Die Spektralanalyse kann für beliebige digitale Daten mit dem Algorithmus der Fast-Fourier-Transform (FFT) durchgeführt werden, auf dem auch die MATLAB-Funktionen zur spektralen Untersuchung von Sprache und Musik in den folgenden Versuchen basieren.

5.2.2 „Digitaler“ Sinus

Ein Sinussignal lässt sich ganz allgemein nach Abbildung 5.7 durch die Größen Amplitude A, Frequenz $f = 1/T$ und Phase φ beschreiben:

$$y_0(t) = A \cdot \sin(2\pi \cdot f \cdot t + \varphi)$$

Abbildung 5.6: Sprachsignal im Zeitbereich (links) und Darstellung der in ihm enthaltenen Frequenzanteile im Spektrum (rechts).
48 5. Digitale Signalübertragung

Abbildung 5.7: Kontinuierliches und abgetastetes (diskretes) Sinussignal. Amplitude A, Frequenz f und Phasenwinkel φ sind die drei kennzeichnenden Größen der Sinusfunktion.

Bei der Abtastung werden dem Signal zu den Zeiten $t = k \cdot T_A = k/f_A$ Proben entnommen, wobei T_A die Abtastperiode, f_A die Abtastfrequenz und k den Zeitindex der digitalen Daten, also den Index im Signalvektor angibt. Damit ergibt sich für einen „digitalen“ Sinus folgende Darstellung:

$$y(k) = A \cdot \sin(2\pi f_A \cdot k + \varphi). \quad (5.2)$$

Natürlich kann der „digitale“ Sinus auch ohne Abtastung direkt im Rechner erzeugt werden.

5.2.3 Kurzzeitspektren

5.2.4 Fragen/Aufgaben

5.2.4.1 Welches Kurzzeitspektrum gehört zu einem stimmhaften Vokal und welches zu einem stimmlosen Konsonanten?

5.2.4.2 Bei welcher Frequenz liegt die charakteristische Sprachgrundfrequenz im rechten Kurzzeitspektrum?

5.2.5 Spektrogramme

5. Digitale Signalübertragung

Abbildung 5.8: Spektrogramm des Testsatzes
She had your dark suit in greasy wash water all year.

5.2.6 Ergebnisse

- Aus Sinussignalen lassen sich beliebige Signale zusammensetzen (“Signalsynthese”), denen die zugrundeliegenden Sinussignale nicht mehr direkt anzusehen sind. Die Addition von den vier Sinussignalen in Abbildung 5.9 führt zu einem orgelähnlichen Ton.

Abbildung 5.9: Addition von vier Sinussignalen verschiedener Frequenzen, Amplituden und Phasen führt z.B. zu einem orgelähnlichem Ton.
5.2. Spektren und Filterung

Abbildung 5.10: Spektralanalyse. Die vier im „Orgelton“ enthaltenen Frequenzkomponenten lassen sich in Form des Spektrums wiedergewinnen.

• Stimmhafte und stimmlose Rahmen eines Sprachvektors lassen sich sehr deutlich im Spektrum unterscheiden (Abbildung 5.11). Stimmhafte Rahmen zeichnen sich durch eher niedrige Frequenzen („Berg liegt links im Spektrum“) und durch Linien (Spitzen) bei Vielfachen der sprechercharakteristischen Sprachgrundfrequenz aus. Stimmlose Rahmen haben starke Frequenzkomponenten bei höheren Frequenzen („Berg liegt eher rechts im Spektrum“) und keine ausgeprägte Linienstruktur an Vielfachen der Sprachgrundfrequenz. Grund hierfür ist die unterschiedliche Erzeugung von stimmhaften und stimmlosen Lauten im Sprechakt. Im Spektrogramm 5.8 lässt sich für eine gesamte sprachliche Äus-

![Spektrogramm](image_url)

Abbildung 5.11: Sprachrahmen im Zeitbereich (oben) und zugehörige Spektren (mitte): Rahmen mit stimmhafter (links) und stimmloser (rechts) Anregung. Unten: Stimmhaftes Spektrum der Geige (links) und stimmloses Spektrum des Beckens (rechts).

• Auch im Spektrum zeigt sich die Verwandschaft zwischen „klingenden“ Instrumenten, wie Klavier, Geige,… und stimmhaften Abschnitten von
5.2. Spektren und Filterung

• Der Zusammenhang zwischen „Noten“ und Frequenzen ist nichtlinear (Spektrogramm in Abb.5.13). Eine Oktave entspricht einer Verdopplung der Frequenz. Bei einem Halbtonschritt erhöht sich die Frequenz um den Faktor $\sqrt{2}$.

Abbildung 5.13: Spektrogramm der C-DUR-Tonleiter, gespielt auf einem Klavier.
5.3 Anwendungen der digitalen Sprach- und Signalverarbeitung

5.3.1 Einleitung

In diesem Teil sollen Anwendungen der digitalen Sprach- und Signalverarbeitung vorgestellt werden. Beispielhaft werden dazu

- die **Modulation**, zur Anpassung von Signalen an die Übertragungsstrecke,
- die **Codierung** zur Datenkompression von Sprach- und Musikdaten,
- die **Geräuschunterdrückung** zur Beseitigung von Hintergrund- und Störgeräuschen in Sprachdaten und
- ein Beispiel aus der **Psychoakustik** (Maskierung)

vorgestellt.

5.3.2 Modulation

Modulation ermöglicht die Anpassung von Signalen an die Übertragungsstrecke (es wird oft auch vom Übertragungs „kanal“ gesprochen). Was ist darunter zu verstehen? Beispielsweise erfordert die Übertragung von Sprache über den Funkkanal (Mobilfunk, Satellitenkommunikation) Frequenzen im Bereich mehrerer Megahertz (1.000.000 Hz) bis hin zu einigen Gigahertz (1.000.000.000 Hz). Sprache und Musik hingegen enthalten aber nur wesentliche Frequenzanteile bis zu einigen Kilohertz (1.000 Hz). Modulation „verschiebt“ die Frequenzen von Sprache/Musik in einen Frequenzbereich, der für die Übertragung geeignet ist.

Das Prinzip der Modulation soll nur kurz veranschaulicht werden. Da sich Signale aus einer Überlagerung von Sinus- bzw. Cosinussignalen darstellen lassen, wird das folgende Cosinusignal stellvertretend für das gesamte Spektrum eines beliebigen Nutzsignals (wie Sprache/Musik) betrachtet:

\[y(t) = A \cdot \cos(\omega_N \cdot t), \quad \text{mit} \quad \omega_N = 2\pi f_N. \] \hspace{1cm} (5.3)

Wenn dieses Signal nun mit einem Cosinus einer (meist wesentlich höheren) Frequenz \(\Omega_T \) multipliziert wird, ergeben sich nach dem Additionstheorem

\[\cos(x) \cdot \cos(y) = \frac{1}{2} [\cos(x - y) + \cos(x + y)] \] \hspace{1cm} (5.4)
Zwei Cosinussignale der Frequenzen \((\Omega_T - \omega_N)\) und \((\Omega_T + \omega_N)\):

\[
y_{mod}(t) = \cos (\Omega_T t) \cdot A \cdot \cos (\omega_N t) = \frac{A}{2} \left[\cos \left((\Omega_T - \omega_N) t \right) + \cos \left((\Omega_T + \omega_N) t \right) \right].
\]

(5.5)

Diese Multiplikation des Nutzsignals mit \(\cos (\Omega_T t)\) wird als Modulation, \(\Omega_T\) als Modulations- oder Trägerfrequenz bezeichnet. Der Vorgang der Modulation wird in der folgenden Abbildung nochmals (für das gesamte Spektrum des Nutzsignals) im Frequenzbereich betrachtet:

![Abbildung 5.14: Frequenzbereichsbetrachtung der Modulation eines Nutzsignals durch Multiplikation mit \(\cos (\Omega_T t)\).](image)

5.3.3 Codierung

Eine weitere wichtige Anwendung ist die Datenkompression durch Codierung. Eine Kompression wird erforderlich, da digitale Daten schnell riesigen Umfang annehmen können. Wenn man beispielsweise an die Compact Disc (CD) denkt, die mit einer Datenmenge von 650 MByte (einst also mehrere Festplatten füllend) nur 74 Minuten Musik zu speichern vermag, und diese riesige Datenmenge mit den im Vergleich dazu kleinen Übertragungsraten im
Abbildung 5.15: Gleichzeitige Übertragung mehrerer Sprecher über einen Kanal durch Modulation mit verschiedenen Trägerfrequenzen.

Internet vergleicht, wird klar, dass Daten (unter weitgehender Beibehaltung der Musik- und Sprachqualität) für den Datenaustausch komprimiert werden müssen. Bekannte Codierer sind beispielsweise der GSM-Codec für mobile Kommunikation und die MPEG-Codecs zur Codierung von Bild-, Sprach- und Musikdaten für Internetanwendungen.

Kann die Datenrate denn nicht durch Reduzierung der Abtastfrequenz und/oder der Anzahlen der Quantisierungsstufen (siehe Abbildung 5.16) verkleinert werden? Nein, denn eine nennenswerte Datenreduktion durch Senkung der Abtastrate oder der Bits pro Abtastwert ist ohne großen Qualitätsverlust nicht möglich. Möglich ist dies jedoch durch Codierung, die bezogen auf den Bereich der Sprache die Nichtlinearität des Gehörs und die Kurzzeitstationarität von Sprache ausnutzt. Ersteres hat zur Folge, dass Sprache Informationen enthält, die das Ohr gar nicht wahrnehmen kann. Diese können also entfernt werden, ohne dass der Hörer davon etwas merkt. Das zweite bedeutet, dass

Abbildung 5.16: Datenreduktion durch Senkung der Bits pro Abtastwert (Anzahl der Quantisierungsstufen) führt zu höheren Quantisierungsfehlern.
Sprache über kleine Abschnitte (bis zu ca. 20 ms) gleiche Eigenschaften besitzt. Wenn dies erkannt wird, kann der gesamte Abschnitt durch dieselben Parameter beschrieben werden und braucht nicht vollständig übertragen werden.

5.3.4 Geräuschreduktion

5.3.5 Psychoakustik

Das Gehör besitzt eine Reihe von (nichtlinearen) Eigenschaften, die beispielsweise bei der Codierung von Sprache (s.o.!) genutzt werden können. So wird eine Verdopplung der Frequenz eines Tones nicht als Verdopplung der Tonhöhe und zwei Töne gleichen Schalldrucks, aber unterschiedlicher Frequenzen, nicht als gleich laut empfunden.

Ein Effekt, der im Rahmen eines Schülerbesuchs an der TF untersucht werden kann, ist die in Abbildung 5.18 skizzierte Maskierung. Ein Testschall (Maskierer genannt), der beispielsweise nur eine Frequenzkomponente bei 1 kHz enthält (reiner Sinuston), sorgt dafür, dass Frequenzkomponenten knapp unter- und oberhalb von 1 kHz vom Gehör nicht mehr so gut wahrgenommen werden können, d.h. das Gehör wird in diesem Bereich „etwas taub“. Ein Schall in der Nähe des 1-kHz-Tones muss also wesentlich lauter sein, wenn er von Gehör wahrgenommen werden soll, als wenn er nur alleine auftritt.
Abbildung 5.17: „Hörläche“. Frequenzabhängiges Lautstärke-Empfinden des menschlichen Gehörs.

Abbildung 5.18: Reduzierung der Empfindlichkeit des Gehörs im Frequenzbereich um einen Maskierer.